EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 11B

Notes

The Natural Continuous Inner Product

We can define the following inner product on square integrable functions. Let f and g be such functions. Then,

$$\langle f,g\rangle = \int_{-\infty}^{\infty} f(x)\overline{g(x)}dx$$

Questions

1. Projecting functions

Let $\{e_k\}_{k\in\mathbb{Z}}$ be a set of orthonormal functions and let f be an arbitrary square integrable function. Let \mathscr{E} be the linear subspace spanned by $\{e_k\}_{k\in\mathbb{Z}}$.

- (a) Prove that $\{e_k\}_{k\in\mathbb{Z}}$ are linearly independent.
- (b) What is the projection of f onto the subspace \mathscr{E} ?

2. Haar Basis

Consider the following function,

$$\phi(x) = \begin{cases} 1, & x \in [0,1) \\ 0, & \text{otherwise} \end{cases}$$

Define,

$$\phi_k^n = 2^{\frac{n}{2}}\phi(2^n x - k)$$

- (a) Intuitively speaking, the support of a function f is defined as the set of points x such that $f(x) \neq 0$. What is support of the function ϕ_k^0 ?
- (b) Prove that $\{\phi_k^0\}_{k\in\mathbb{Z}}$ forms an orthonormal set.
- (c) What is the support of ϕ_k^n ?
- (d) Prove that $\{\phi_k^n\}_{k\in\mathbb{Z}}$ forms an orthonormal set.

Observe that $\{\phi_k^n\}_{k\in\mathbb{Z}}$ forms an orthonormal set with *n* determining the resolution, or fineness, of any arbitrary square integrable function that the orthonormal set can represent since the support gets finer as *n* increases. Further more, if we define,

$$V_n = \operatorname{span}\left(\left\{\phi_k^n\right\}_{k\in\mathbb{Z}}\right),\,$$

we have the property that,

$$V_n \subset V_{n+1}$$

Let us explore this.

(e) Find coefficients p_l such that,

$$\phi_k^0 = \sum_{l \in \mathbb{Z}} p_l \phi_l^1$$

(f) Using the previous answer, find a function ψ_k^0 with the same support as ϕ_k^0 such that,

$$\langle \phi_k^0, \psi_k^0 \rangle = 0$$

Hint. Use the coefficients from the previous function.

Contributors:

• Siddharth Iyer.