EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 13A

1 Notes

1.0.1 Discrete Fourier Transform

Assume we are working with an N length discrete signal and we would like to find its discrete frequencies. This is done through the Discrete Fourier Transform (DFT), which is simply a change of basis to what is called the DFT basis.
First, let us vectorize our signal. If $x[n]$ is our input signal, we model it as a vector by letting the $n^{\text {th }}$ coordinate by $x[n]$. In other words,

$$
\vec{x}=[x[0], x[1], x[2], \ldots, x[N-1]]^{T}
$$

In order to decompose \vec{x} into its constituent frequencies, we must find the vector representation of these frequencies.

Given that we have an N length signal, we have N different discrete frequencies of the following form.

$$
u_{k}[t]=\frac{1}{\sqrt{N}} e^{j \frac{2 \pi}{N} k t} \text { for } k=0,1, \ldots N-1
$$

To simplify we let

$$
W_{k}=e^{j k \frac{2 \pi}{N}}
$$

and we rewrite

$$
u_{k}[t]=\frac{1}{\sqrt{N}} W_{k}^{t} \text { for } k=0,1, \ldots N-1
$$

In building up a frequency basis, we vectorize the above frequencies in a manner similar to how we vectorized \vec{x}. Define \vec{u}_{k} as follows.

$$
\vec{u}_{k}=\frac{1}{\sqrt{N}}\left[1, W_{k}, W_{k}^{2}, \ldots, W_{k}^{N-1}\right]^{T}
$$

$\left\{\vec{u}_{k}\right\}_{k=0}^{N-1}$ is an orthonormal set of vectors. To see why, first consider arbitrary \vec{u}_{p} and \vec{u}_{q} such that $p \neq q$.

$$
\begin{aligned}
\left\langle\vec{u}_{p}, \vec{u}_{q}\right\rangle & =\frac{1}{N} \sum_{n=0}^{N-1} e^{-j \frac{2 \pi}{N} p n} e^{j \frac{2 \pi}{N} q n} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} e^{j \frac{2 \pi}{N}(q-p) n}
\end{aligned}
$$

Before we continue, let us remind ourselves about the sum of a finite geometric series. Let S be the sum of the series. Then,

$$
S=1+a+a^{2}+\cdots a^{N-1}
$$

Then,

$$
a S=a+a^{2}+a^{3}+\cdots a^{N}
$$

Subtracting the two, we get,

$$
(1-a) S=1-a^{N} \Longrightarrow S=\frac{1-a^{N}}{1-a}
$$

Applying this, we get,

$$
\begin{aligned}
\left\langle\vec{u}_{p}, \vec{u}_{q}\right\rangle & =\frac{1}{N} \sum_{n=0}^{N-1}(\underbrace{e^{j \frac{2 \pi}{N}(q-p)}}_{a})^{n} \\
& =\frac{1}{N}\left(\frac{1-a^{N}}{1-a}\right) \\
& =\frac{1}{N}\left(\frac{1-e^{j \frac{2 \pi}{N}(q-p) N}}{1-e^{j \frac{2 \pi}{N}(q-p)}}\right)
\end{aligned}
$$

Note that $q-p$ is an non-zero integer. This means that,

$$
e^{j \frac{2 \pi}{N}(q-p) N}=e^{j 2 \pi(q-p)}=1
$$

Applying this, we get,

$$
\left\langle\vec{u}_{p}, \vec{u}_{q}\right\rangle=0
$$

Finally, we also observe that, for a particular DFT basis vector,

$$
\left\langle\vec{u}_{p}, \vec{u}_{p}\right\rangle=\frac{1}{N} \sum_{n=0}^{N-1} e^{-j \frac{2 \pi}{N} p n} e^{j \frac{2 \pi}{N} p n}=\frac{1}{N} \sum_{n=0}^{N-1} 1=1
$$

Thus, $\left\{\vec{u}_{k}\right\}_{k=0}^{N-1}$ is an orthonormal set of vectors and is a valid basis. The coefficients of \vec{x} within this basis are called the frequency components of \vec{x} and are often denote by \vec{X}.

$$
\vec{X}=\left[\left\langle\vec{x}, \vec{u}_{0}\right\rangle,\left\langle\vec{x}, \vec{u}_{1}\right\rangle, \cdots,\left\langle\vec{x}, \vec{u}_{N-1}\right\rangle\right]^{T}
$$

The $k^{t h}$ frequency component is the $k^{t h}$ coordinate of \vec{X} and is denoted as $X[k]$. If we want to get the component in the same space as \vec{x}, we complex the projection.

$$
\operatorname{proj}_{\vec{u}_{k}} \vec{x}=X[k] \vec{u}_{k}
$$

It is worthwhile to note that there is a conjugate property we often exploit.

$$
e^{j \frac{2 \pi}{N} p n}=e^{-j \frac{2 \pi}{N}(N-p) n}
$$

This means that,

$$
\vec{u}_{k}=\overline{\vec{u}_{N-k}}
$$

Finally, since we are using complex exponentials, there is a periodicity that can be succinctly expressed with the remainder operation (also called mod). Let p be any arbitrary integer.

$$
\vec{u}_{p}=\vec{u}_{p \bmod N}
$$

2 Questions

1. Roots of Unity

The DFT is a coordinate transformation to a basis made up of roots of unity. In this problem we explore some properties of the roots of unity. An N th root of unity is a complex number z satisfying the equation $z^{N}=1$ (or equivalently $z^{N}-1=0$).
(a) Show that $z^{N}-1$ factors as

$$
z^{N}-1=(z-1)\left(\sum_{k=0}^{N-1} z^{k}\right)
$$

(b) Show that any complex number of the form $\omega_{k}=e^{j \frac{2 \pi}{N} k}$ for $k \in \mathbb{Z}$ is an N-th root of unity.
(c) Draw the fifth roots of unity in the complex plane. How many of them are there?
(d) Let $\omega_{1}=e^{j \frac{2 \pi}{5}}$. What is $\omega_{1}^{2} ?$ What is ω_{1}^{3} ? What is ω_{1}^{42} ?
(e) What is the complex conjugate of ω_{1} ? What is the complex conjugate of ω_{42} ?
(f) Compute $\sum_{k=0}^{N-1} \omega^{k}$ where ω is some root of unity. Does the answer make sense in terms of the plot you drew?
2. DFT of pure sinusoids We can think of a real-world signal that is a function of time $x(t)$. By recording its values at regular intervals, we can represent it as a vector of discrete samples \vec{x}, of length n.

$$
\vec{x}=\left[\begin{array}{c}
x[0] \tag{1}\\
x[1] \\
\vdots \\
x[N-1]
\end{array}\right]
$$

Let $\vec{X}=\left[\begin{array}{lll}X[0] & \ldots & X[N-1\end{array}\right]^{T}$ be the signal \vec{x} represented in the frequency domain, that is

$$
\begin{equation*}
\vec{X}=F^{-1} \vec{x}=F^{*} \vec{x} \tag{2}
\end{equation*}
$$

where F is a matrix of the DFT basis vectors $\left(\omega=e^{j \frac{2 \pi}{N}}\right)$.
$F=\left[\begin{array}{ccc}\mid & & \mid \\ \vec{u}_{0} & \cdots & \vec{u}_{n-1} \\ \mid & & \mid\end{array}\right]=\frac{1}{\sqrt{N}}\left[\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 1 & W_{1} & W_{2} & \cdots & W_{N-1} \\ 1 & W_{1}^{2} & W_{2}^{2} & \cdots & W_{N-1}^{2} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & W_{1}^{N-1} & W_{2}^{N-1} & \ldots & W_{N-1}^{N-1}\end{array}\right]=\frac{1}{\sqrt{N}}\left[\begin{array}{ccccc}1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)}\end{array}\right]$

Alternatively, we have that $\vec{x}=F \vec{X}$ or more explicitly

$$
\begin{equation*}
\vec{x}=X[0] \vec{u}_{0}+\cdots+X[n-1] \vec{u}_{n-1} \tag{4}
\end{equation*}
$$

In other words, \vec{x} is a linear combination of the complex exponentials \vec{u}_{i} with coefficients $X[i]$.
(a) Consider the continuous-time signal $x(t)=\cos \left(\frac{2 \pi}{3} t\right)$. Suppose that we sampled it every 1 second to get (for $n=3$ time steps):

$$
\vec{x}=\left[\begin{array}{lll}
\cos \left(\frac{2 \pi}{3}(0)\right) & \cos \left(\frac{2 \pi}{3}(1)\right) \quad \cos \left(\frac{2 \pi}{3}(2)\right)
\end{array}\right]^{T}
$$

Compute \vec{X} and the basis vectors \vec{u}_{k} for this signal.
(b) Now for the same signal as before, suppose that we took $n=6$ samples. In this case we would have:

$$
\vec{x}=\left[\begin{array}{lllll}
\cos \left(\frac{2 \pi}{3}(0)\right) & \cos \left(\frac{2 \pi}{3}(1)\right) & \cos \left(\frac{2 \pi}{3}(2)\right) & \cos \left(\frac{2 \pi}{3}(3)\right) & \cos \left(\frac{2 \pi}{3}(4)\right)
\end{array} \cos \left(\frac{2 \pi}{3}(5)\right)\right]^{T} .
$$

Repeat what you did above. What are \vec{X} and the basis vectors \vec{u}_{k} for this signal.
(c) Let's do this more generally. For the signal $x(t)=\cos \left(\frac{2 \pi k}{N} t\right)$, compute \vec{X} of its vector form in discrete time, \vec{x}, of length $n=N$:

$$
\vec{x}=\left[\begin{array}{llll}
\cos \left(\frac{2 \pi k}{N}(0)\right) & \cos \left(\frac{2 \pi k}{N}(1)\right) & \cdots & \cos \left(\frac{2 \pi k}{N}(n-1)\right)
\end{array}\right]^{T}
$$

Contributors:

- Siddharth Iyer.
- John Maidens.
- Yen-Sheng Ho.
- Yu-Yun Dai.

