EECS 16B Designing Information Devices and Systems II

 Spring 2017 Murat Arcak and Michel Maharbiz Discussion 14A
Notes

Linear Time-Invariant (LTI) Systems

We will represent a system as follows, with $x(t)$ as an input into system $h(t)$ and $y(t)$ as the output. In next week's section, we will learn how to characterize a system in order to find $h(t)$, called the impulse response. This week, we will focus on how the properties of linearity and time invariance affect the inputs and outputs, $x(t)$ and $y(t)$ of a system.

Linearity

A linear system has the properties below:
(a) additivity

$$
\begin{equation*}
x_{1}(t)+x_{2}(t) \longrightarrow h(t) \longrightarrow y_{1}(t)+y_{2}(t) \tag{1}
\end{equation*}
$$

(b) scaling

$$
\begin{equation*}
\alpha x(t) \longrightarrow \alpha y(t) \tag{2}
\end{equation*}
$$

Together, these two properties are known as superposition:

$$
\alpha_{1} x_{1}(t)+\alpha_{2} x_{2}(t) \longrightarrow h(t) \longrightarrow \alpha_{1} y_{1}(t)+\alpha_{2} y_{2}(t)
$$

Time invariance
A system is time-invariant if its behavior is fixed over time:

$$
\begin{equation*}
x\left(t-t_{0}\right) \longrightarrow h(t) \longrightarrow y\left(t-t_{0}\right) \tag{3}
\end{equation*}
$$

Questions

1. Time-Shift Systems

Imagine we have a system $S_{\rightarrow 2}$ that takes any length 5 input signal and shifts it by 2 steps. For example, $S_{\rightarrow 2}([3,1,4,1,5])=[1,5,3,1,4]$.
(a) Is this system linear? That is, for any signals \vec{x} and \vec{y}, does $S_{\rightarrow 2}$ fulfill properties (1) and (2)?
(b) Is this system time-invariant? Does it fulfil (3)?
(c) What does $S_{\rightarrow 2}$ look like when written as a matrix?

2. Is it LTI?

Determine if the following systems are LTI:
(a) $y[t]=2 x[-2+3 t]+2 x[2+3 t]$
(b) $y[t]=4^{x[t]}$
(c) $y[t]-y[t-1]+y[t-2]=x[t]-x[t-1]-x[t-2]$
(d) $y[t]=x[t]-x[t-2]$
(e) $y[t]=x[t]+t x[t-1]$
(f) $y[t]=2^{t} \cos (x[t])$

3. The DFT basis and LTI systems

Suppose \vec{x} is the input signal applied to a linear time-invariant (LTI) system characterized by the impulse response \vec{h}. The output \vec{y} is given by $C_{\vec{h}} \vec{x}$ where $C_{\vec{h}}$ is a circulant matrix with the first column given by \vec{h}. Suppose the DFT coefficients of \vec{x} are given by

$$
\vec{X}=\left[\begin{array}{llll}
X[0] & X[1] & \ldots & X[n-1
\end{array}\right]^{T} .
$$

(a) Compute the DFT representation of the impulse response \vec{h} as well as the eigenvalues of the circulant matrix that defines the system with that impulse response. $(n=3)$

$$
\vec{h}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}
$$

(b) Compute the DFT representation of the impulse response \vec{h} as well as the eigenvalues of the circulant matrix that defines the system with that impulse response. $(n=3)$

$$
\vec{h}=\left[\begin{array}{lll}
\cos \left(\frac{2 \pi}{3}(0)\right) & \cos \left(\frac{2 \pi}{3}(1)\right) & \cos \left(\frac{2 \pi}{3}(2)\right)
\end{array}\right]^{T}
$$

(c) Compute the DFT representation of the impulse response \vec{h} as well as the eigenvalues of the circulant matrix that defines the system with that impulse response. $(n=N)$

$$
\vec{h}=\left[\begin{array}{llll}
\cos \left(\frac{2 \pi k}{N}(0)\right) & \cos \left(\frac{2 \pi k}{N}(1)\right) & \cdots & \cos \left(\frac{2 \pi k}{N}(n-1)\right)
\end{array}\right]^{T}
$$

Contributors:

- Deborah Soung.
- Brian Kilberg.

