EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 14B

Notes

Recap: LTI System Model

Recall that $h[n]$, or the system response, is the system output to the input $\delta[n]$. We then decompose our input signal, $x[n]$, into a series of shifted δ functions.

$$
x[n]=x[0] \delta[n]+x[1] \delta[n-1]+\cdots+x[k-1] \delta[n-k+1]+\cdots
$$

Since the system is linear and time invariant, the output is going to be,

$$
y[n]=x[0] h[n]+x[1] h[n-1]+\cdots+x[k-1] h[n-k+1]+\cdots
$$

If $x[n]$ and $h[n]$ are finite, we can construct a vector-matrix model of LTI systems. Let $x[n]$ have length P and $h[n]$ have length $Q+1$.
Important. When constructing the vector representations of $x[n]$ and $h[n]$, add zeros the end so that the length of both vectors are at least $P+Q$.

The vector-matrix model is as follows. Note the matrix structure.

Succinctly, we can represent this as,

$$
\vec{y}=\boldsymbol{H} \vec{x}
$$

DFT + LTI systems

Rather beautifully, DFT basis vectors are eigenvectors of \boldsymbol{H}. We will have $P+Q$ DFT vectors, since that is the dimensionality of our model.

$$
u_{k}[n]=\frac{1}{\sqrt{P+Q}} e^{i\left(\frac{2 \pi}{P+Q} k\right) n}
$$

Let \vec{u}_{k} be the vectorized version of $u_{k}[n]$ and let $H[k]$ be the $k^{t h}$ DFT coefficient of $h[n]$. (Recall that $H[k]=$ $\left.\left\langle\vec{h}, \vec{u}_{k}\right\rangle\right)$.

$$
\boldsymbol{H} \vec{u}_{k}=\underbrace{(\sqrt{P+Q} \times H[k])}_{\text {eigenvalue }} \vec{u}_{k}
$$

This is really useful. (1) can be really difficult to work with, so we simply decompose it into the DFT domain. Let Y be the DFT coefficient of \vec{y}, H be the DFT of \vec{h} and X be the DFT of \vec{x}. Then,

$$
\left[\begin{array}{c}
Y[0] \tag{2}\\
Y[1] \\
\vdots \\
\vdots \\
\vdots \\
\vdots[P+Q-1]
\end{array}\right]=\sqrt{P+Q}\left[\begin{array}{ccccccccc}
H[0] & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & H[1] & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & H[2] & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & 0 \\
\vdots & 0 \\
\vdots & 0 \\
\vdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & H[P+Q-1]
\end{array}\right]\left[\begin{array}{c}
X[0] \\
X[1] \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\\
\\
\\
\end{array}\right]
$$

In other words,

$$
Y[k]=\sqrt{P+Q} H[k] X[k]
$$

REMEMBER TO ZERO PAD WHEN VECTORIZING.

Questions

1. Fast Convolution Using FFT

We have a system with finite impulse response $h(k), k=0, \ldots, M$.
(a) How do you compute the response of this system to an input $u(k), k=0, \ldots, L-1$?
(b) How many operations (multiplications and additions) does this take?
(c) Can you think of a faster way to do this when $M+L$ is large? (Hint: computing the DFT using the Fast Fourier Transform (FFT) algorithm takes approximately $N \log N$ operations where N is the length of the vector being transformed.)

2. DFT and Bode Plots

Consider the circuit

Figure 1: A first order RC Low Pass Filter
(a) Write a differential equation describing the evolution of $v_{\text {out }}$.
(b) Draw a Bode plot for this circuit.
(c) Discretize the differential equation assuming a zero order hold on the input $v_{i n}$. (Hint: The differential equation $a \dot{x}=-x+u$ can be discretized as $x(k+1)=e^{-\frac{1}{a} T} x(k)+\left(1-e^{-\frac{1}{a} T}\right) u(k)$ where T is the sampling period.)
(d) What is the impulse response of this LTI system?
(e) In Python, compute the DFT of the impulse response. You can assume that $R=1, C=1 / 10, N=1001$ (number of samples) and $T=1 / 10$ (sampling period).
(f) Plot the amplitude and phase of the first $N / 2$ DFT coefficients. How do they compare with the Bode plots?

Contributors:

- Siddharth Iyer.
- John Maidens.

