EECS 16B Designing Information Devices and Systems II

 Spring 2017 Murat Arcak and Michel Maharbiz Discussion 2A
Euler's Formula

The following relationship is very useful and will be used in detail later in the course. For now, it will be useful for one of the questions.

$$
e^{j \theta}=\cos (\theta)+j \sin (\theta)
$$

1. Solutions of Second Order Differential Equations

Consider a differential equation of the form,

$$
\frac{\mathrm{d}^{2} f}{\mathrm{~d} t^{2}}(t)+a_{1} \frac{\mathrm{~d} f}{\mathrm{~d} t}(t)+a_{0} f(t)=0
$$

such that,

$$
f(t)=c_{1} e^{\lambda t}+c_{2} e^{\bar{\lambda} t}
$$

where $f(\cdot)$ is a real valued function from \mathbb{R} to \mathbb{R}.
(a) Use the fact that f is real to prove that c_{1} and c_{2} are complex conjugates of each other. Hint. Let $c_{1}=a_{1}+j b_{1}, c_{2}=a_{2}+j b_{2}$ and $\lambda=\sigma+j \omega$.
(b) Let $c=a+j b$ and $\lambda=\sigma+j \omega$. Show that you can reduce $f(t)$ to the following form:

$$
f(t)=(2 a \cos (\omega t)-2 b \sin (\omega t)) e^{\sigma t}
$$

(c) When solving for the original differential equation, why do we not need to solve for c_{1} and c_{2} and instead we directly jump to a and b ?
(d) What happens if $\sigma<0$?
(e) What happens if $\sigma=0$?
(f) What happens if $\sigma>0$?

