EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 2B

Notes

Constant External Force Nonhomogeneous Differential Equations

The following differential equation is a nonhomogeneous, constant external force differential equation:

$$
\frac{d^{2} y}{d t^{2}}+a_{1} \frac{d y}{d t}+a_{0} y=b
$$

where b is a constant.
Even though this expression isn't equal to 0 , we can still solve it using our method for homogeneous differential equations. If we substitute y with $\tilde{y}=y-\frac{b}{a_{0}}$, then we end up with a new differential equation that is homogeneous:

$$
\frac{d^{2} \tilde{y}}{d t^{2}}+a_{1} \frac{d \tilde{y}}{d t}+a_{0} \tilde{y}=0
$$

Now we can solve for \tilde{y} and then reverse our substitution to get y.

Questions

1. RLC circuit

Consider the following circuit:

(a) Draw the circuit corresponding to $t<0$. What are the values of V_{C}, V_{R}, V_{L}, and i at $t=0_{-}$, the time right before the switches close. Assume this circuit has been in this state for a long time.
(b) Now draw the circuit corresponding to $t \geq 0$. Using your results from the previous part, what are V_{C}, V_{R}, V_{L}, and i at $t=0_{+}$.
(c) Assuming the solution of the differential equation for V_{C} has the form $V_{C}(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}$, what are the values of c_{1} and c_{2} ? Treat λ_{1} and λ_{2} as known constants.

2. Charging RLC Circuit

Consider the following circuit:

(a) Write out the differential equation describing this circuit for $t \geq 0$ in the form:

$$
\frac{d^{2} V_{c}}{d t^{2}}+a_{1} \frac{d V_{c}}{d t}+a_{0} V_{c}=b
$$

(b) Find a \tilde{V}_{c} and substitute it to the previous equation such that

$$
\frac{d^{2} \tilde{V}_{c}}{d t^{2}}+a_{1} \frac{d \tilde{V}_{c}}{d t}+a_{0} \tilde{V}_{c}=0
$$

(c) Solve for \tilde{V}_{c}.
(d) Solve for V_{C}

Contributors:

- Brian Kilberg.

