EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 2B

Notes

Constant External Force Nonhomogeneous Differential Equations

The following differential equation is a nonhomogeneous, constant external force differential equation:

$$\frac{d^2y}{dt^2} + a_1\frac{dy}{dt} + a_0y = b$$

where b is a constant.

Even though this expression isn't equal to 0, we can still solve it using our method for homogeneous differential equations. If we substitute y with $\tilde{y} = y - \frac{b}{a_0}$, then we end up with a new differential equation that is homogeneous:

$$\frac{d^2\tilde{y}}{dt^2} + a_1\frac{d\tilde{y}}{dt} + a_0\tilde{y} = 0$$

Now we can solve for \tilde{y} and then reverse our substitution to get y.

Questions

1. RLC circuit

Consider the following circuit:

- (a) Draw the circuit corresponding to t < 0. What are the values of V_C , V_R , V_L , and i at $t = 0_-$, the time right before the switches close. Assume this circuit has been in this state for a long time.
- (b) Now draw the circuit corresponding to $t \ge 0$. Using your results from the previous part, what are V_C , V_R , V_L , and *i* at $t = 0_+$.
- (c) Assuming the solution of the differential equation for V_C has the form $V_C(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$, what are the values of c_1 and c_2 ? Treat λ_1 and λ_2 as known constants.

2. Charging RLC Circuit

Consider the following circuit:

(a) Write out the differential equation describing this circuit for $t \ge 0$ in the form:

$$\frac{d^2 V_c}{dt^2} + a_1 \frac{dV_c}{dt} + a_0 V_c = b$$

(b) Find a \tilde{V}_c and substitute it to the previous equation such that

$$\frac{d^2 \tilde{V_c}}{dt^2} + a_1 \frac{d \tilde{V_c}}{dt} + a_0 \tilde{V_c} = 0$$

- (c) Solve for \tilde{V}_c .
- (d) Solve for V_C

Contributors:

• Brian Kilberg.