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Transfer Functions
When we analysed circuits in the phasor domain, we always told you what the input voltage, or the input
sinusoid to the circuit was. However, sometimes we have many input sinusoids, and we want to look at how
a circuit (or system) generically responds to a sinusoid input of frequency ω . We want to see how an input
sinusoid "transfers" into an output sinusoid. How do we do this?

Let’s start with the example of an RC Circuit.
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Figure 1: A first order RC Low Pass Filter

In the phasor domain, the impedance of the capacitor is ZC = 1
jωC and the impedance of the Resistor is

ZR = R. Because we treat impedances the same as resistances, this circuit looks like a voltage divider in the
phasor domain. Remember we must also represent vin as a phasor Ṽin; transfer functions are in the phasor
domain only, not the time domain.

˜Vout =
ZC

ZR +ZC
Ṽin =

1
jωC

R+ 1
jωC

Ṽin =
1

jωRC+1
Ṽin

We define the frequency response as

H(ω) =
˜Vout

Ṽin
=

1
jωRC+1

Now, given an arbitrary input sinusoid if we multiply it by the frequency response, we can get the output
sinusoid. What this allows us to do, is model any arbitrary circuit as a 4 port (two input, two output) black
box. The transfer function completely defines how our circuit works.

The transfer function of a circuit provides deeper insight than the DC response of a circuit. Let’s consider
the transfer function above. How does the circuit respond to high frequencies? What about low frequencies?

lim
ω→∞

H(ω) =
1

j∞RC+1
= 0
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lim
ω→0

H(ω) =
1

j0RC+1
= 1

This tells us that the RC circuit above passes sinusoids of lower frequencies (frequencies close to 0), and
stops sinusoids of high frequencies (frequencies closer to ∞. For this reason we call it a "low pass" filter. If
we input a combination of sinusoids of different frequencies into this filter, we can see that it will respond
differently to all of them.

When we write the transfer function of an arbitrary circuit, it always takes the following form. This is called
a "rational transfer function". We also like to factor the numerator and denominator, so that they become
easier to work with and plot:

H(ω) =
n(ω)

d(ω)
=

( jω)nαn +( jω)n−1αn−1 + ... jωα1 +α0

( jω)nβn +( jω)n−1βn−1 + ... jωβ1 +β0
= K

( j ω

ωz1
+1)( j ω

ωz2
+1)...

( j ω

ωp1
+1)( j ω

ωp2
+1)...

Here, we define the constants ωz as "zeros" and ωp as "poles". In the circuit above, we have one no zeros
and 1 pole at ωp =

1
RC . The significance of poles and zeros will be explained in further detail when we go

into Bode Plots.

Note: If we cascade transfer circuits to make more complex transfer functions, we can’t treat the transfer
functions separately. To illustrate this, let’s take the example above and cascade it.

+

−
vin

R1

C1

R2

C2

+

−

vout

Figure 2: Second Order RC Filter

If we set the intermediate node to Ṽx, we get the following equations to solve for the transfer function.

Performing KCL at the Ṽx node and the ˜Vout node.

Ṽx−Ṽin

R1
+

Ṽx
1

jωC1

+
Ṽx− ˜Vout

R2
= 0

˜Vout −Ṽx

R2
+

˜Vout
1

jωC2

= 0

Putting the equations together and solving for the transfer function, we get:
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H(ω)RCActual =
˜Vout

Ṽin

=
1

( jω)2R1R2C1C2 + jω(C2R1 +C1R1 +R2C2)+1

=
1

( jωR1C1 +1)( jωR2C2 +1)+ jωC2R1

If we had thought of the circuit in Figure 2 as two separate RC Low Pass filters (as shown in Figure 1), then
our frequency response would have been

H(ω)RCPredicted =
1

( jωR1C1 +1)( jωR2C2 +1)

The predicted solution that we have is incorrect for the above circuit (Figure 2). Because there is coupling
between the two RC filters, we can’t model the it as two separate RC filters. If we wanted to do that, we
would have to find a way to de-couple the two circuits from each other. Luckily, we learned how to do
this! If we put an op-amp in buffer configuration between the two RC filters, they are no longer electrically
coupled to one another, and act as two separate RC low pass filters.
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Figure 3: Simple RC Low Pass
Filter

+

−
vin

R1

C1

R2

C2

+

−

vout

H(ω) = 1
( jω)2R1R2C1C2+ jω(R1(C1+C2)+R2C2)+1

Figure 4: Cascaded RC Filter
with no buffer stage
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Figure 5: Cascaded RC Filter
with intermediate buffer stage

Plotting Transfer Functions
It is often useful to be able to plot the transfer function of a circuit as a function of frequency. This allows
to visualize how our circuit reacts to any particular frequency. Because the frequency response is a complex
number, we plot the magnitude and phase of the frequency response on separate plots. Transfer functions
can be very complicated, so being able to plot them allows to look at how the circuit responds at intermediate
frequencies, not just the extremes of 0 and ∞.

For example, let’s plot the transfer function for the RC Low pass filter above. First, we find the magnitude
and phase response from the transfer function.

|H(ω)|= | 1
jωRC+1

|= |1|
| jωRC+1|

=
1√

(ωRC)2 +1

∠H(ω) = ∠
1

jωRC+1
= ∠1−∠( jωRC+1) =−tan−1(ωRC)
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Plotting using numerical methods and R = 1kΩ,C = 1µF we get the following:
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Figure 6: A first order RC Low Pass Filter

There a few things to notice about the plot. We plotted the frequency on a logarithmic scale so that we
can see the circuit response over a wide range. One important thing to notice is that at the pole frequency
(ωp =

1
RC = 1000 rad

s ), the phase is precisely −45◦ and the magnitude is precisely 1√
2
≈ 0.707. We refer to

this point as the "cutoff frequency" for this low pass filter. Every frequency below the cutoff frequency is
"passed" (its amplitude remains the same), and everything above the cutoff frequency is stopped (its ampli-
tude goes to≈ 0). This is an approximation, but as long as we design ourcircuit to have minimal frequencies
near the cutoff, it is a pretty good one.
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Bode Plots
Bode Plots provide us with a simple and easy tool to plot these transfer functions by hand. Always remember
that Bode Plots are an approximation, if you want the precisely correct plots you need to use numerical
methods (like solving using MATLAB or ipython).

When we make Bode Plots we plot the frequency on a logarithmic scale, the magnitude on a decibel scale
and the angle in either degrees or radians. We use the decibel because it allows us to break up complex
transfer functions into it’s constituent components. We define the decibel as the following:

20log10(|H(ω)|) = dB

When making the bode plot (and plotting using a logarithmic unit), we treat each individual pole and zero
independently, and then add them back together at the end. We can use the Bode Plot rules to help us plot
each of the individual poles and zeros.

Aside: Where did the factor 2 come from in the conversion between Voltage and Decibels? Because current
also matters to us when looking at these transfer functions, a better metric for transfer function magnitude
is power transfer instead of voltage transfer.

|H(ω)|= 10log
Pout

Pin
= 10log

V 2
out
R

V 2
out
R

= 10log
V 2

out

V 2
in

= 20log
Vout

Vin

Example:

Plot the magnitude and phase of the following transfer function using the Bode approximation and a numer-
ical solver and compare the two.

H(ω) =
100( j ω

1000 +1)
( j ω

106 +1)( j ω

108 )

We see 1 zero at 103 rad
s , 2 poles at 106 rad

s and 108 rad
s , and a constant offset by 100. We start with the

constant value, and then move from lowest to highest frequency plotting the poles and zeros as we go.
Finally, we add together the plots for each of the individual poles and zeros to give us the final Bode Plot.

Finally, comparing the Bode approximation and the precise value calculated via a computer, we can see the
Bode approximation is very similar to the exact answer, except for around the pole and zero frequencies (as
expected).
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Figure 7: Plotting of the transfer function
magnitude using the Bode approximation

Figure 8: Plotting of the transfer function
angle using the Bode approximation

Figure 9: A comparison of Bode vs. Exact (numerically computed) answers. Note the good agreement
between both, except at the pole and zero frequencies.

Algorithm.

Given a frequency response H(ω),

(a) Break H(ω) into a product of poles and zeros as in the cheat sheet. Appropriately divide terms to
reduce H(ω) into one of the given forms. We determine ωc by reducing a term into one of the above
forms.

(b) Draw out the bode plot for each pole and zero in the product above.

(c) Add the resulting plots to get the final bode plot.
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Questions
1. Bode Plots of Transfer Functions

To understand the concept of transfer functions and filters with a concrete example, consider the following
simple RC circuit. Let the voltage source VS be designated as the input phasor, and let VR and VC designate
the two output voltage phasors. R = 1kΩand C = 1µF.

−
+ Vs

C
+

−
VC

R

+

−

VR

(a) What is the impedance of a 1kΩ resistor? Draw a bode plot of the impedance of the resistor as a
function of frequency.

(b) What is the impedance of a 1µF capacitor? On the same bode plot as the last question, sketch the
capacitor’s impedance as a function of frequency. When is |ZC| >> |ZR| and vice versa? At what ω

does |ZC|= |ZR|? What is this ω called?

(c) Now lets look at the impedance voltage divider below. What is the transfer function H(ω) = ṼC
ṼS

?

ZC

+ −VC

ZR

+

−

VR−
+ Vs

(d) For the region where |ZR| >> |ZC|, what is the approximate function for | ṼC
ṼS
|? Sketch a bode plot of

this function for this region. At what frequencies is our approximation no longer valid?

(e) What is the approximate function for | ṼC
ṼS
| when |ZC|>> |ZR|? On the same plot as before, sketch the

bode plot of this approximate function. Where does this function meet your approximation for when
|ZR|>> |ZC|?

(f) What is the worst case error for our piecewise approximation? On a log-log plot, does this error appear
very large?

(g) Approximately what is the phase of ṼC
ṼS

at ω = 0, 1
10RC ,

1
RC ,

10
RC ,

1000
RC ? Connect the dots and sketch a plot

of phase vs. time below your magnitude plot.

(h) Draw the bode plot for | ṼR
ṼS
|.
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Figure 10: Bode Plot Cheat Sheet
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