EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 5B

Linearization of systems

One dimensional linear approximation

Consider a differentiable function f of one variable.

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

Say we are interested in f in a small, open neighborhood about a particular point t_{0}. t_{0} is often called the fixed point of the system. Lets call this open neighborhood U. In this case, we can construct a linear approximation of f about the neighborhood U. Recall that,

$$
\frac{\mathrm{d} f}{\mathrm{~d} t}\left(t_{0}\right) \approx \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}} \text { for } t \in U
$$

We can use the above to construct a linear approximation of f. Let f_{l} denote the linear approximation of f about U.

$$
\begin{equation*}
f_{l}(t)=\frac{\mathrm{d} f}{\mathrm{~d} t}\left(t_{0}\right)\left(t-t_{0}\right)+f\left(t_{0}\right) \tag{1}
\end{equation*}
$$

Strictly speaking, f_{l} is an affine approximation unless $t_{0}=0$, but the process of obtaining f_{l} is colloquially called the linearization of f.
For example, consider $f(t)=t^{2}$. We will set the fixed point of the system to be $t_{0}=1$. Then,

$$
\begin{aligned}
f_{l}(t) & =\frac{\mathrm{d} f}{\mathrm{~d} t}\left(t_{0}\right)\left(t-t_{0}\right)+f\left(t_{0}\right) \\
& =2(t-1)+1 \\
& =2 t-1
\end{aligned}
$$

Let $\varepsilon=10^{-2}$. Consider the open neighborhood $U=(1-\varepsilon, 1+\varepsilon)$. Lets plot f and f_{l} when their respective domains are restricted to U. This is seen in Figure 1 .

Linearization of a system

Consider a continuous, non-linear system with state $\vec{x}(t)$ (which is n dimensional) and representation $\vec{u}(t)$ (which is m dimensional) of the form,

$$
\frac{\mathrm{d} \vec{x}}{\mathrm{~d} t}(t)=f(\vec{x}(t), \vec{u}(t))
$$

To clarify and establish notation, f is a function that takes in $\vec{x}(t)$ and $\vec{u}(t)$ and outputs an n dimensional vector. $f_{k}(\vec{x}(t), \vec{u}(t))$ refers to the function that is the $k^{t h}$ coordinate of the output of $f(\vec{x}(t), \vec{u}(t))$.

Figure 1: Comparing the linear approximation of a function to the original function

Let $\vec{x}_{0}(t)$ be the desired state trajectory and $\vec{u}_{0}(t)$ be the desired input. Let $\delta \vec{x}(t)$ be a small perturbation about the state trajectory and $\delta \vec{u}(t)$ be the small perturbation about the input trajectory. In equation form,

$$
x(t)=x_{0}(t)+\delta \vec{x}(t) \text { and } u(t)=u_{0}(t)+\delta \vec{u}(t)
$$

Analogous to (1), we will construct an affine estimate about a neighborhood around the fixed points.

$$
\begin{equation*}
f\left(\vec{x}_{0}(t)+\delta \vec{x}(t), \vec{u}_{0}(t)+\delta \vec{u}(t)\right) \approx f\left(\vec{x}_{0}(t), \vec{u}_{0}(t)\right)+\frac{\mathrm{d} f}{\mathrm{~d} x}\left(x_{0}(t), u_{0}(t)\right) \delta \vec{x}(t)+\frac{\mathrm{d} f}{\mathrm{~d} u}\left(x_{0}, u_{0}\right) \delta \vec{u}(t) \tag{2}
\end{equation*}
$$

Notice that we have used the notation $\frac{\mathrm{d} f}{\mathrm{~d} x}$ and $\frac{\mathrm{d} f}{\mathrm{~d} u}$, which might be strange to consider since $\vec{x}(t)$ is a vector and not a single variable. This is the multidimensional generalization of the derivative, which is constructed as follows.

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}(x, u)=\left[\begin{array}{cccc}
\frac{\mathrm{d} f_{1}}{\mathrm{~d} x_{1}}(x, u) & \frac{\mathrm{d} f_{1}}{\mathrm{~d} x_{2}}(x, u) & \ldots & \frac{\mathrm{d} f_{1}}{\mathrm{~d} n_{n}}(x, u) \\
\frac{\mathrm{d} f}{\mathrm{~d} 2} & (x, u) & \frac{\mathrm{d} f_{2}}{\mathrm{~d} x_{2}}(x, u) & \ldots \\
\frac{\mathrm{d} f_{2}}{\mathrm{~d} x_{n}}(x, u) \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\mathrm{d} f_{n}}{\mathrm{~d} x_{1}}(x, u) & \frac{\mathrm{d} f_{n}}{\mathrm{~d} x_{2}}(x, u) & \ldots & \frac{\mathrm{d} f_{n}}{\mathrm{~d} x_{n}}(x, u)
\end{array}\right] \text { and } \frac{\mathrm{d} f}{\mathrm{~d} u}=\left[\begin{array}{ccccc}
\frac{\mathrm{d} f_{1}}{\mathrm{~d} u_{1}}(x, u) & \frac{\mathrm{d} f_{1}}{\mathrm{~d} u_{2}}(x, u) & \ldots & \frac{\mathrm{d} f_{1}}{\mathrm{~d} u_{m}}(x, u) \\
\frac{\mathrm{d} f_{2}}{}(x, u) & \frac{\mathrm{d} f_{2}}{\mathrm{~d} u_{2}}(x, u) & \ldots & \frac{\mathrm{d} f_{2}}{\mathrm{~d} u_{m}}(x, u) \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\mathrm{d} f_{n}}{\mathrm{~d} u_{1}}(x, u) & \frac{\mathrm{d} f_{2}}{\mathrm{~d} u_{2}}(x, u) & \ldots & \frac{\mathrm{d} f_{n}}{\mathrm{~d} u_{m}}(x, u)
\end{array}\right]
$$

Note the dimensions of the matrices. It must be notated that, when calculating $\frac{\mathrm{d} f}{\mathrm{~d} x}, \vec{u}$ is considered constant. Similarly, when calculating $\frac{\mathrm{d} f}{\mathrm{~d} u}, \vec{x}$ is considered constant.
To continue from (2), note that,

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}(t)=\frac{\mathrm{d} x_{0}(t)}{\mathrm{d} t}+\frac{\mathrm{d} \delta x}{\mathrm{~d} t}(t) \text { and } \frac{\mathrm{d} x_{0}}{\mathrm{~d} t}(t)=f\left(x_{0}(t), u_{0}(t)\right)
$$

Plugging this back into (2), we get,

$$
\frac{\mathrm{d} x_{0}}{\mathrm{~d} t}(t)+\frac{\mathrm{d} \delta x}{\mathrm{~d} t}(t) \approx \frac{\mathrm{d} x_{0}}{\mathrm{~d} t}(t)+\frac{\mathrm{d} f}{\mathrm{~d} x}\left(x_{0}(t), u_{0}(t)\right) \delta \vec{x}(t)+\frac{\mathrm{d} f}{\mathrm{~d} u}\left(x_{0}, u_{0}\right) \delta \vec{u}(t)
$$

Thus, we get linearized version of our system.

$$
\begin{equation*}
\frac{\mathrm{d} \delta x}{\mathrm{~d} t}(t) \approx \frac{\mathrm{d} f}{\mathrm{~d} x}\left(x_{0}(t), u_{0}(t)\right) \delta \vec{x}(t)+\frac{\mathrm{d} f}{\mathrm{~d} u}\left(x_{0}, u_{0}\right) \delta \vec{u}(t) \tag{3}
\end{equation*}
$$

Note that, unlike the one dimensional linearization example, we are linearizing with respect to \vec{x} and \vec{u}. Also, observe that our state variables are now the pertubations $\delta \vec{x}(t)$ and $\delta \vec{u}(t)$.

Questions

1. Linearization

Consider a mass attached to two springs:

We assume that each spring is linear with spring constant k and resting length X_{0}. We want to build a state space model that describes how the displacement y of the mass from the spring base evolves.
(a) Find the force F applied by each spring.
(b) Use Newton's law to write an equation for \ddot{y} in terms of y.
(c) Write this model in state space form $\dot{x}=f(x)$.
(d) Find the equilibrium of the model assuming that $X_{0}<a$.
(e) Linearize your model about the equilibrium.
(f) Compute the eigenvalues of your linearized model. Is this equilibrium stable?

Contributors:

- Siddharth Iyer.
- John Maidens.

