## EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 8B

## Singular Value Decomposition

The SVD is a useful way to characterize a matrix. Let $A$ be a matrix from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$ (or $A \in \mathbb{R}^{m \times n}$ ). The SVD of matrix $A$ is the following decomposition into 3 different matrices that have specific properties discussed below.

$$
A=U \Sigma V^{T}
$$

The properties of $U, \Sigma$ and $V$ are,

- $U$ is an $[m \times m]$ matrix whose columns consist of orthonormal vectors that form a basis for the codomain, or $\mathbb{R}^{m}$. Consequently,

$$
U^{*} U=I
$$

- $V$ is an $[n \times n]$ matrix whose columns consist of orthonormal vectors that form a basis for the domain, or $\mathbb{R}^{n}$. Consequently,

$$
V^{*} V=I
$$

- $U$ characterizes the column space of $A$ and $V$ characterizes the row space of $A$.
- $\Sigma$ is an $[m \times n]$ matrix whose diagonal entries are the singular values of $A$ arranged in descending order. The singular values are the square roots of the eigenvalues of $A^{T} A$ (or, identically, $A A^{T}$ ).
- The singular values of a matrix $A$ are always real and non-negative.

We calculate the SVD as follows.
(a) Pick $A A^{T}$ or $A^{T} A$.
(b) Let $\lambda_{i}$ denote the $i^{\text {th }}$ eigenvalue of the chosen matrix, $\Lambda$ be the diagonal matrix consisting of the eigenvalues of the chosen matrix and $\sigma_{i}$ be the $i^{\text {th }}$ singular value of $A$.

- If using $A^{T} A$, calculate its eigenvalue decomposition to find $\Sigma$ and $V$.

$$
A^{*} A=V \Lambda V^{*} \text { with } \sigma_{i}=\sqrt{\lambda_{i}}
$$

- If using $A A^{T}$, calculate its eigenvalue decomposition to assign $\Sigma$ and $U$

$$
A A^{T}=U \Lambda U^{T} \text { with } \sigma_{i}=\sqrt{\lambda_{i}}
$$

Note that the non-diagonal entries of $\Sigma$ will be zero. The various singular values $\left\{\sigma_{i}\right\}$ calculated will be on the diagonal.
(c) Regardless of which matrix picked in step (1), calculate the remaining matrix (either $U$ or $V$ ) using the following to ensure everything is sign consistent.

$$
A v_{i}=\sigma_{i} u_{i}
$$

If any singular value is 0 or you seem to have run out of vectors to completely construct the $U$ or $V$ matrix, complete the basis (or columns of the appropriate matrix) using Gram-Schmidt. Remember to orthonormalize afterwards.

The SVD of $A$ is taken to better understand it in terms of the 3 nice matrices. Often, we do not completely construct the $U$ and $V$ matrices.

## Questions

## 1. SVD and Fundamental Subspaces

Define the matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right] .
$$

(a) Find the SVD of $A$.
(b) Find the rank of $A$.
(c) Find a basis for the kernel (or nullspace) of $A$.
(d) Find a basis for the range (or columnspace) of $A$.

## 2. Eigenvalue Decomposition and Singular Value Decomposition

Consider a matrix $A \in \mathbb{R}^{n \times n}$ with the eigenvalue decomposition,

$$
A=P \Lambda P^{T} \text { with } \lambda_{i} \geq 0
$$

(a) Find the SVD of $A$.
(b) Let one particular eigenvalue $\lambda_{j}$ be negative, with the associated eigenvector being $p_{j}$. Succinctly,

$$
A p_{j}=\lambda_{j} p_{j} \text { with } \lambda_{j}<0
$$

We are still assuming that,

$$
A=P \Lambda P^{T}
$$

i. What is the singular value $\sigma_{i}$ associated to $\lambda_{i}$ ?
ii. What is the relationship between the left singular vector $u_{i}$, the right singular vector $v_{i}$ and the eigenvector $p_{i}$ ?

## 3. SVD and Induced 2-Norm

(a) Show that if $U$ is an orthogonal matrix then for any $\vec{x}$

$$
\|U \vec{x}\|=\|\vec{x}\| .
$$

(b) Find the maximum

$$
\max _{\{\vec{x}:\|\vec{x}\|=1\}}\|A \vec{x}\|
$$

in terms of the singular values of $A$.
(c) Find the $\vec{x}$ that maximizes the expression above.

## Contributors:

- Siddharth Iyer.
- John Maidens.

