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Notes
Complex Inner Product

The inner product of two complex vectors v and w is,

〈v,w〉=
n

∑
i

viwi = wT v

w means that we take the complex conjugate of each element. We define the following notation as it becomes
cumbersome to continually use · and (·)T .

wT v = w∗v = wHv

H and ∗ are often used to denote the same operation of taking the transpose of a vector after complex
conjugating each element.

Self-Adjoint/ Hermitian Matrices

A matrix T is called Hermitian or self-adjoint if T = T ∗.

Positive (Semi-) Definite Matrices

A matrix T is a positive semi-definite matrix if it is self-adjoint and,

v∗T v≥ 0 for all v ∈ Cn

Additionally, it is positive definite if,

v∗T v = 0 if and only if v = 0

Complex Spectral Theorem: Statement

Let T be a self-adjoint matrix from Cn to Cn. Then,

(a) There exists n linearly independent eigenvectors of T that form a basis for Cn. Further more, the
eigenvectors are orthonormal.

(b) The eigenvalues of T are real.
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Questions
1. Eigenvalues are Real

Prove the following: For any self-adjoint matrix A, any eigenvalue of A is real.

Hint: Use the definition of an eigenvalue to show that λ ∗(~v∗~v) = λ (~v∗~v).

2. Eigenvectors are Orthogonal

Prove the following: For any symmetric matrix A, any two eigenvectors corresponding to distinct eigenval-
ues of A are orthogonal.

Hint: Use the definition of an eigenvalue to show that λ1(~v∗1~v2) = λ2(~v∗1~v2).

3. Power Iteration

Power iteration is a method for approximating eigenvectors of a matrix A numerically. It’s particularly
effective when A is very large but very sparse. For example Google’s PageRank algorithm, used to determine
the ranking of search results, essentially attempts to perform power iteration on the adjacency matrix of links
between all web pages on the internet.

The method starts with any vector x0 and then iterates the following update:

~xk+1 =
A~xk

‖A~xk‖
.

You will show that this algorithm converges for symmetric A.

(a) Show that if A is a diagonal matrix

λ1
. . .

λn

 with λ1 strictly greater than the other λi then

the power iteration method converges to


1
0
...
0

, which is the eigenvector corresponding to the largest

eigenvalue of A.

(b) Now use the spectral decomposition to show that for any symmetric matrix whose largest eigenvalue
is strictly greater than its other eigenvalues, the power iteration method converges to the eigenvector
corresponding to the largest eigenvalue.
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