1. Interpolation

Samples from the sinusoid \(f(x) = \sin(0.2\pi x) \) are shown in Figure 1. Draw the results of interpolation using each of the following three methods:

(a) Zero order hold interpolation.
(b) Linear interpolation.
(c) Sinc interpolation assuming the Nyquist limit has been satisfied.

![Figure 1: Samples of f(x).](image)

2. Linear interpolation

Consider a piecewise-linear real valued function \(f(x) \) such that,

(a) In the interval \([k, k + 1]\) where \(k \) is an integer, \(f \) is a line straight line.
(b) \(f(x) \) is zero for \(x < k_1 \) and \(f(k_1) = 0 \).
(c) \(f(x) \) is zero for \(x > k_2 \) and \(f(k_2) = 0 \).

Consider the function \(\phi(x) \) defined as,

\[
\phi(x) = \begin{cases}
1 - |x|, & x \in [-1, 1] \\
0, & \text{otherwise}
\end{cases}
\]

(a) Sketch \(\phi(x-k) \) for some arbitrary integer \(k \).
(b) Write the basis function and coefficient that captures the line of \(f(x) \) from \(x = k_1 \) to \(x = k_1 + 1 \). That is to say, find real number \(\alpha \) and integer \(p \) such that,

\[
f(x) = \alpha \phi(x - p) \text{ for } x \in [k_1, k_1 + 1]
\]

(c) What is the equation of the line from \(k \) to \(k + 1 \), where \([k, k + 1]\) is within \([k_1, k_2]\)? That is to say, find an equation of the form,

\[
y = mx + c,
\]

that represents the line in \(f \) between \(k \) and \(k + 1 \).

(d) Consider the function,

\[
g(x) = f(k)\phi(x - k) + f(k + 1)\phi(x - (k + 1))
\]

What is the equation of the line formed between \([k, k + 1]\), where \([k, k + 1]\) is within \([k_1, k_2]\)? Write it once again in the form,

\[
y = mx + c.
\]

This should match your previous answer.

(e) Given the answers to the previous parts, we have shown that we can break down \(f \) into a linear sum of shift \(\phi \) functions. Find the coefficients \(\alpha_k \) such that,

\[
f(x) = \sum_{k \in \mathbb{Z}} \alpha_k \phi(x - k)
\]

3. **Sampling a continuous-time control system to get a discrete-time control system**

Recall from Lecture 12A that a continuous-time system

\[
\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) \tag{1}
\]

\[
y(t) = C\vec{x}(t)
\]

can be represented with a discrete-time model

\[
\vec{x}_d(k + 1) = A_d\vec{x}(k) \tag{2}
\]

\[
y_d(k) = C\vec{x}_d(k)
\]

where \(\vec{x}_d(k) \) and \(y_d(k) \) are the values of the state \(\vec{x}(t) \) and output \(y(t) \) at time instants \(t = kT, k = 1, 2, 3, \ldots \)

In this problem we will see that the observability of (1) does not necessarily imply observability of (2): there may be sampling periods \(T \) that fail to preserve observability. Since observability depends on \(A \) and \(C \) alone we have omitted the inputs in the equations above.

(a) Suppose \(A \) is diagonalizable; that is, there exists a matrix \(P \) such that

\[
P^{-1}AP = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}
\]
Show that
\[A_d = P \begin{bmatrix} e^{\lambda_1 T} & & \\ & \ddots & \\ & & e^{\lambda_n T} \end{bmatrix} P^{-1}. \]

To do so, you can introduce the new state vector \(\vec{z} = P^{-1} \vec{x} \) and then use the result from Lecture 12A for the discretization of a diagonal \(A \) matrix to obtain a discrete-time model for \(\vec{z}_d(k) \). You would then return to the original state with \(\vec{x}_d(k) = P\vec{z}_d(k) \) to obtain (2).

(b) Use the result of part (a) to calculate \(A_d \) as a function of the sampling period \(T \) when
\[A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}. \]

(c) Let \(C = \begin{bmatrix} 1 & 0 \end{bmatrix} \) so that \((A, C)\) is an observable pair. Show that there exist values of \(T \) for which \((A_d, C)\) is not observable. (Hint: compare the discrete-time model to the example in Lecture 7B.)

4. Aliasing

Watch the following video: https://www.youtube.com/watch?v=jQDjJRyMeWg.

Assume the video camera running at 30 frames per second. That is to say, the camera takes 30 photos within a second, with the time between photos being constant.

(a) Given that the main rotor has 5 blades, list all the possible rates at which the main rotor is spinning in revolutions per second assuming no physical limitations.

Hint: Your answer should depend on \(k \) where \(k \) can be any integer.

(b) Given that the back rotor has 3 blades and completes 2 revolutions in 1 second in the video, list all the possible rates at which the back rotor is spinning in revolutions per second assuming no physical limitations.

Hint: Your answer should depend on \(k \) where \(k \) can be any integer.

Contributors:

- John Maidens.
- Siddharth Iyer.
- Murat Arcak.