This homework is due February 22, 2017, at 17:00.

1. **Bandpass filter** Consider the series bandpass filter below where \tilde{V}_s and \tilde{V}_o are phasor voltages:

![Bandpass Filter Diagram]

(a) What is the transfer function, $H(\omega) = \frac{\tilde{V}_o}{\tilde{V}_s}$, of this circuit?

(b) What is ω_0 of this filter?

(c) What is ω_c_1 and ω_c_2 of this filter? Hint: $H(\omega_c_1) = H(\omega_c_2) = \frac{1}{\sqrt{2}}$

(d) What is the bandwidth, B, of this filter?

(e) What is the Q of this filter?

2. **Bode plots**

(a) **Transfer Functions to Bode Plots**

Problem 9.18: Generate Bode magnitude and phase plots (straight-line approximation) for the following voltage transfer functions:

- (a) $H(\omega) = \frac{30(10 + j\omega)}{(200 + j2\omega)(1000 + j2\omega)}$
- (b) $H(\omega) = \frac{j100\omega}{(100 + j5\omega)(100 + j\omega)\omega}$
- (c) $H(\omega) = \frac{200 + j2\omega}{(50 + j5\omega)(1000 + j\omega)}$

(b) Bandstop
3. **Ring oscillator** Figure 4 shows a ring oscillator circuit with three inverters. These inverters are modeled as non-ideal op-amps using a general, non-ideal, op-amp model. Remember, **our golden rules don’t apply** for the models below. Each op-amp acts as an inverter with gain. The voltage inputs terminals are considered open circuits. $R_{out} = 10k\Omega$, $C_{o1} = C_{o2} = C_{o3} = 1pF$, and $K_1 = K_2 = K_3 = 2$
Figure 4: Ring Oscillator Modeled with Non-Ideal Op-Amps

(a) First, let’s look at the first op-amp in the chain. For the circuit in figure 5, find the transfer function for \(\frac{\bar{v}_1}{v_0} \).

Figure 5: First Op-Amp in Ring Oscillator

(b) Now, let’s look at three of these op-amps cascaded together as seen in figure 6. What is the transfer function for \(\frac{\bar{v}_1}{v_0} \)? (Hint: since the input of each op-amp is an open circuit, the overall transfer function can be represented as the individual transfer functions of each amplifier cascaded together.)

Figure 6: Ring Oscillator without Feedback
(c) Draw the bode plots for the magnitude and phase of \(\tilde{v}_3 / \tilde{v}_0 \).
(d) At what frequency is the phase of \(\tilde{v}_3 \) equal to \(-2\pi\)? What is the magnitude of \(\tilde{v}_3 / \tilde{v}_0 \) at that frequency? How does \(\tilde{v}_3 \) compare to \(\tilde{v}_0 \) at this frequency? An interesting consequence of this result is that this system will have a sustained oscillation when placed in feedback.

4. Redo Problem 1 on the midterm

(a)
(b)
(c)
(d)

5. Redo Problem 2 on the midterm

(a)
(b)
(c)
(d)

6. Redo Problem 3 on the midterm

(a)
(b)

7. Redo Problem 4 on the midterm

(a)
(b)
(c)
(d)
(e)

8. Redo Problem 5 on the midterm

(a)
(b)
Important Instructions:

Show your work. An answer without explanation is not acceptable and does not guarantee any credit.

Only the front pages will be scanned and graded. Back pages won't be scanned; you can use them as scratch paper.

Do not remove pages, as this disrupts the scanning. Instead, cross the parts that you don't want us to grade.

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>
“Well, Diotallevi and I are planning a reform in higher education. A School of Comparative Irrelevance, where useless or impossible courses are given. The school’s aim is to turn out scholars capable of endlessly increasing the number of unnecessary subjects.”
— Umberto Eco, *Foucault’s Pendulum*

Problem 1 *Warm up* (20 points)

a) Consider the following circuit. Z_{eq} is the impedance looking into the circuit from the left, as shown. Provide an expression for Z_{eq}.

\[Z_{eq} = \]
b) If this impedance is driven by a sinusoidal source at frequency, \(\omega \) [rad/s], for what \(\omega \) is \(Z_{eq} = \infty \)?

\[\omega = \]

c) What logic function does the following circuit perform?
d) Consider the following four circuits. For each, we define the voltage transfer function, \(H_v(\omega) = \frac{V_{out}}{V_{in}} \).
With respect to \(H_v(\omega) \), circle what class of frequency response each circuit performs.

- Lowpass filter
- Highpass filter
- Bandpass filter
- Bandstop filter

<table>
<thead>
<tr>
<th>Circuit 1</th>
<th>Circuit 2</th>
<th>Circuit 3</th>
<th>Circuit 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowpass</td>
<td>Highpass</td>
<td>Bandpass</td>
<td>Bandstop</td>
</tr>
<tr>
<td>filter</td>
<td>filter</td>
<td>filter</td>
<td>filter</td>
</tr>
</tbody>
</table>

Circuit 1
- Lowpass filter
- Highpass filter
- Bandpass filter
- Bandstop filter

Circuit 2
- Lowpass filter
- Highpass filter
- Bandpass filter
- Bandstop filter

Circuit 3
- Lowpass filter
- Highpass filter
- Bandpass filter
- Bandstop filter

Circuit 4
- Lowpass filter
- Highpass filter
- Bandpass filter
- Bandstop filter
Problem 2 (20 points)

Consider the circuit below. Assume an ideal op amp.

a) Find an expression that relates the derivative of v_{out} ($\frac{dv_{out}}{dt}$) to the input voltage (v_{in}) and/or its derivative ($\frac{dv_{in}}{dt}$).

\[
\frac{dv_{out}}{dt} =
\]

b) Now given that $C_s = 1 \text{ nF}$, $C_f = 5 \text{ nF}$, $C_p = 1 \text{ nF}$, $v_{Cf}(t<0) = v_{Cs}(t<0) = 0$ and $v_{in}(t\geq0) = 5*t \text{ [volts]}$, provide an expression for $v_{out}(t)$ for $t\geq0$.

"You can tell you've found a really interesting question when nobody wants you to answer it."
― James S.A. Corey, *Nemesis Games*
Consider now the different circuit below. Assume an ideal op amp.

\[v_{\text{out}}(t) = \]

\[d) \text{ Assume } v_{\text{in}}(t \geq 0) = 5t \text{ [volts]} \] and \[v_{\text{cf}}(t < 0) = 0 \]. What is the value of \[v_{\text{out}}(t) \] at \(t = 1 \text{ s} \)?

\[v_{\text{out}}(t) = \]
Problem 3 (15 points)

The following circuit is part of a near field communication system. A realistic voltage source (V_s, R_s) is connected through a switch onto a three component circuit. The inductor represents an antenna; the voltage across it modulates how much energy is radiated away from the system. The switch alternates continuously between position A and position B; it has been doing this since $t = -\infty$. It spends π microseconds at each position.

We want the voltage on the inductor, V_L, to follow the curve plotted below. Specifically, we want to fulfill the following condition.

Condition: The inductor voltage should oscillate 5 times during period when the switch is in position A.

Plot of V_L as a function of time with switch positions labeled. Note the units of time (10^{-6} seconds)!
a) If $R \to \infty$ and L is non-zero and known, provide an expression for C such that the above condition is met. (Reminder: the condition is that the inductor voltage should oscillate 5 times during period when the switch is in position A.)

\[C = \]

b) Unfortunately, a colleague tells you that $R \neq \infty$; if L and C are known, provide an expression for R such that the above condition is met. (Reminder: the condition is that the inductor voltage should oscillate 5 times during period when the switch is in position A.)

\[R = \]
Problem 4 (30 points)

Consider the circuit below.

a) What is \(i(0) \)?

 Hint. What is the current flowing through \(L1 \) before the switch opens? Consequently, what is the current flowing through \(L2 \)?

b) What is \(\frac{di}{dt}(0) \)?

c) What is the relationship between the voltages across \(L1 \) and \(R1 \)?
d) Use KCL on Node A and the relationship derived above to arrive at a differential equation of the form,

\[\frac{d^2i}{dt^2}(t) + a_1 \frac{di}{dt}(t) + a_0i(t) = 0 \]

where \(i(t)\) is the current going through L2.

e) Let \(R_1 = R_2 = R\) and \(L_1 = L_2 = L\). Recall that the above differential equation can be reshaped into the follow linear algebra problem:

\[
\begin{bmatrix}
\frac{di}{dt} \\
\frac{d^2i}{dt^2}
\end{bmatrix}
= A
\begin{bmatrix}
i \\
\frac{di}{dt}
\end{bmatrix}
\]

What is the A matrix and what are its eigenvalues?

f) Will this circuit exhibit any oscillations?
Problem 5 (15 points)

Consider the circuit below.

a) Given an input voltage, $v_1(t)$, which is a sinusoid at frequency ω, and phasors corresponding to the input and output voltages, V_1 and V_2, find an expression for V_2/V_1.

\[
\frac{V_2}{V_1} = \text{expression here}
\]
b) If $v_1(t) = \cos(\omega t)$ where $\omega = 10^6 \text{ rad/s}$ and $L = 1 \mu\text{H}$, $R = 1 \Omega$, and $C = 0.5 \mu\text{F}$, solve for $v_2(t)$.

$$v_2(t) =$$
Contributors:

- Brian Kilberg.