Thevenin / Norton Equivalent Circuits and Source Transformation

1. Thevenin equivalent circuits

2. There are three methods to find V_{th} and R_{th}.
 a) Find V_{oc} (open circuit voltage) and i_{sc} (short circuit current).

 Then, $V_{th} = V_{oc}$ and $R_{th} = \frac{V_{oc}}{i_{sc}}$

3. Find either V_{oc} and i_{sc} as above (whichever is easier).
 Then, deactivate all independent sources (i.e. set them to 0). Then, simplify circuit to find the equivalent resistance. This is R_{th}. (This method only works if there are no dependent sources in circuit.)

4. (add V_{ex})
Add a fictitious V_{ex} as above.
Solve for i_{ex}.
\[R_{th} = \frac{V_{ex}}{i_{ex}} \]

II. Source transformations

If a circuit can be represented by a voltage source and a resistor, it stands to reason that it should also be similarly represented by a current source and a resistor.

\[I_n = I_{th} \]

\[I_n = \frac{V_{th}}{R_{th}} \]