1. Circuit Design

In this problem, you will find a circuit where several components have been left blank for you to fill in. Assume that the op-amp is ideal.

You have at your disposal only one of each of the following components (not including R_1 and R_2):

- (a) an open circuit
- (b) a short circuit
- (c) a resistor (you choose from the values $R = 1\, \text{k}\Omega, 15\, \text{k}\Omega, 30\, \text{k}\Omega$)
- (d) a capacitor (you choose from the values $C = 0.5\, \mu\text{F}, 1\, \mu\text{F}, 2\, \mu\text{F}$)

Consider the circuit below. The voltage source $V_{\text{in}}(t)$ has the form $V_{\text{in}}(t) = v_0 \cos(\omega t + \phi)$. The labeled voltages $V_{\text{in}}(\omega)$ and $V_{\text{out}}(\omega)$ are the phasor representations of $v_{\text{in}}(t)$ and $v_{\text{out}}(t)$. The transfer function $H(\omega)$ is defined as $H(\omega) = \frac{V_{\text{out}}(\omega)}{V_{\text{in}}(\omega)}$.

(a) Let R_1 be $1\, \text{k}\Omega$. Fill in the boxes and determine the value of R_2, such that

- It is a high-pass filter.
- $|H(\infty)| = 10$.
- $|H(10^3)| = \sqrt{50}$.
• \(R_2\) must be one of the three values listed above.

(b) Draw the Bode plot of this transfer function.

2. Bandpass Filter

Consider the parallel bandpass filter below, where \(\widetilde{V}_s\) and \(\widetilde{V}_o\) are phasor voltages:

(a) What is the transfer function, \(H(\omega) = \frac{\widetilde{V}_o}{\widetilde{V}_s}\), of this circuit in terms of \(R, L,\) and \(C\)?

(b) What is \(\omega_0\) of this filter?

(c) What is \(\omega_{c1}\) and \(\omega_{c2}\) of this filter? (Hint: \(H(\omega_{c1}) = H(\omega_{c2}) = \frac{1}{\sqrt{2}}\).)

(d) What is the bandwidth \(B\) of this filter?

(e) What is the \(Q\) of this filter?

3. Similarity Transforms

Consider the following circuit:

Recall that we constructed the following state space representation of this system.

\[
\begin{bmatrix}
\frac{dV_{C_2}}{dt} \\
\frac{d^2V_{C_2}}{dt^2} \\
\frac{dx}{dt}
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 1 \\
-\left(\frac{1}{C_1C_2R_1R_2}\right) & -\left(\frac{C_1+C_2+C_2R_1}{C_1C_2R_2}\right) \\
0 & 0 & -\left(\frac{1}{C_1+C_2}\right)
\end{bmatrix} \begin{bmatrix}
V_{C_2} \\
\frac{dV_{C_2}}{dt} \\
x
\end{bmatrix}
\]
For simplicity, let \(R_1 = R_2 = R \) and \(C_1 = C_2 = C \). Then,

\[
\begin{bmatrix}
\frac{dV_{C_2}}{dt} \\
\frac{d^2V_{C_2}}{dt^2}
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
-\left(\frac{1}{CR^2}\right) & -\left(\frac{3}{CR}\right)
\end{bmatrix}
\begin{bmatrix}
V_{C_2} \\
\frac{dV_{C_2}}{dt}
\end{bmatrix}
\]

We are going to try something different in this question: We’re going to instead use \(V_{C_1} \) and \(V_{C_2} \) as state variables and connect the two different state space representations.

(a) Find a system matrix, which we will denote \(\mathcal{A} \), such that,

\[
\begin{bmatrix}
\frac{dV_{C_1}}{dt} \\
\frac{dV_{C_2}}{dt}
\end{bmatrix} = \mathcal{A}
\begin{bmatrix}
V_{C_1} \\
V_{C_2}
\end{bmatrix}
\]

(b) Find a linear function that expresses \(\frac{dV_{C_2}}{dt} \) in terms of \(V_{C_1} \) and \(V_{C_2} \).

(c) Use the previous answers to construct a matrix \(T \) such that,

\[
\begin{bmatrix}
V_{C_2} \\
\frac{dV_{C_2}}{dt}
\end{bmatrix} = T
\begin{bmatrix}
V_{C_1} \\
V_{C_2}
\end{bmatrix}
\]

Succinctly,

\[\vec{x} = T\vec{z} \]

(d) We know that

\[
\frac{d\vec{x}}{dt} = A\vec{x} \text{ and } \frac{d\vec{z}}{dt} = \mathcal{A}\vec{z}
\]

Use \(T \) from the previous question to conclude that

\[\mathcal{A} = T^{-1}AT \]

(e) Let \(C = 1 \) and \(R = 1 \). Verify that,

\[\mathcal{A} = T^{-1}AT \]

(f) Continuing the assumption that \(C = 1 \) and \(R = 1 \), find the eigenvalues of \(A \) and \(\mathcal{A} \). (Use a calculator.) What do you observe?

4. 1D Linear Approximations In Continuous Systems

Linearization is an incredible tool when it comes to studying systems with non-linear dynamics. (This is when system matrix \(A \) is dependent on the state variables.) We overcome this by fixing a point in state space, often denoted as \(x_0 \), and approximating the transitions about that point. To better understand this, we will work through a 1D example.

(a) Consider an arbitrary function of \(f(x) \) whose derivative \(\frac{df}{dx} \) is well defined. Construct a function of the form,

\[g(x) = mx + b \]

that approximates \(f(x) \) in a neighborhood around a particular point \(x_0 \). \(m \) will be related to \(\frac{df}{dx} \).

Hint: Recall the definition of a derivative.
(b) We will study the following system.
\[\frac{dx}{dt}(t) = f(x), \text{ where } f(x) = -2\sin\left(\frac{1}{3}x\right) \]

What is \(\frac{df}{dx}(x) \)?

(c) What are the equilibrium points for this system?

(d) Construct a linear approximation \(g(x) \) of \(f(x) \) about the point \(x_0 = 0 \).

(e) Using the above approximation, solve the system,
\[\frac{dx}{dt}(t) = f(x) \approx g(x) \]
with \(x(0) = 1 \).

Note: This approximation is valid for points \(x \) close to \(x_0 \). We will explore this “closeness” when we study state feedback.

5. Spring and Mass

Let’s look at a mechanical spring-mass system governed by differential equations similar to those of electrical circuits.

Recall from physics that the motion of a mass is subject to Newton’s second law \(F = ma \) where \(a = \frac{dv}{dt} \) and \(v = \frac{dx}{dt} \) and that springs generate a force according to \(F_{sp} = -k\Delta x \), where \(k \) is the spring’s stiffness. We set \(x \) to be 0 when the spring is at its rest length \(l_0 \), so that \(\Delta x = x \). There is no gravity in this problem.

(a) Find a differential equation in terms of \(x \) and its derivatives that describes the motion of the mass. What order is this differential equation?

(b) Write the state space model for this system as \(\dot{x} = Ax \). What is your state vector?

(c) Find the eigenvalues of this system by solving \(\det(A - \lambda I) = 0 \). Is this system stable?

Contributors:

• Kyle Tanghe.
• Siddharth Iyer.
• Justin Yim.