LINEAR TIME-INVARIANT (LTI) SYSTEMS

1. INTRODUCTION
2. RECAP OF LINEARITY
3. TIME INVARIANCE
4. EXAMPLES
5. LTI SYSTEMS: IMPULSE RESPONSE CHARACTERIZATION (CAUSALITY) — DISCRETE
6. ILLUSTRATION OF DISCRETE CONVOLUTION
7. VERY SIMILAR RESULT FOR C.T.

1. INTRODUCTION

![Diagram showing classification of systems: Linear, Time-Invariant (LTI), Time-Varying (LTV), Nonlinear, and our focus on LTI systems.]

WHY FOCUS ON LTI SYSTEMS?

- EASIEST TO ANALYSE AND UNDERSTAND → POWERFUL, ELEGANT INSIGHTS.
- VERY USEFUL APPROXIMATION OF REAL WORLD SYSTEMS
- WITHOUT KNOWING LTI WELL, CAN'T PROGRESS TO LTV/NONLINEAR

EXAMPLES OF LTI SYSTEMS

- PRETTY MUCH EVERY SYSTEM WE HAVE DONE IN THIS CLASS!
- RC, RLC CIRCUITS
- (LINEARIZED) PENDULUM
- CO-OPERATIVE CAR CONTROL
2. **RECAP OF LINEARITY**

- **"If and only if"**

$$\Downarrow \text{LINEAR IFF : } \Downarrow \text{"LEADS TO"}$$

1. **SCALING**: If \(u(t) \rightarrow y(t) \), then \((\alpha u(t)) \rightarrow (\alpha y(t)) \) [\(\alpha u(t), \alpha y(t) \)]

2. **SUPERPOSITION**: If \(u_1(t) \rightarrow y_1(t) \), \(u_2(t) \rightarrow y_2(t) \), then

\[(u_1(t) + u_2(t)) \rightarrow (y_1(t) + y_2(t)) \] [\(u(t), y(t) \)]

EXAMPLE: defecred to a little lake.

3. **TIME INVARIANCE**

- **IN WORDS**: SHIFTING THE INPUT (IN TIME) Shifts THE OUTPUT (BY THE SAME AMOUNT)

- **IN EQUATIONS**: if \(u(t) \rightarrow y(t) \), then \(u(t-\zeta) \rightarrow y(t-\zeta) \) [\(\zeta \in \mathbb{R}, \zeta u(t) \)]

(\(\zeta \) is A CONSTANT, DOES NOT DEPEND ON \(t \))

IN PICTURES

\[\frac{\text{u}(t)}{u(t-\zeta)} \rightarrow \frac{\text{y}(t)}{y(t-\zeta)} \]
Examples:

→ **Linear but not time invariant:**

→ \(y(t) = 2 \sin(2\pi t) \ u(t) \)

→ **Linear? Check scaling & superposition: Yes**

→ \(u(t) \) try, \(u(t) = \cos(2\pi t) \)

→ \(y(t) = 2 \sin(2\pi t) \cos(2\pi t) = \sin(4\pi t) \)

\[
\begin{align*}
\sin(A+B) &= \sin A \cos B + \cos A \sin B \\
\sin(2A) &= 2 \sin A \cos A
\end{align*}
\]

→ **Shift** \(u(t) \) by \(0.5 \): \(u(t-0.5) = \cos(2\pi(t-0.5)) = \cos(2\pi t - \pi) = -\cos(2\pi t) \)

→ \(y_{\text{new}}(t) = 2 \sin(2\pi t) u(t-0.5) = -2 \sin(2\pi t) \cos(2\pi t) = -\sin(4\pi t) \)

\[
\begin{align*}
\sin(\theta) &= y(t-0.5) \\
-\sin(4\pi t) &= y(t-0.5)
\end{align*}
\]

→ If TI, then \(y_{\text{new}}(t) \) should be \(\bar{y}(t-0.5) = \sin(4\pi(t-0.5)) \)

= \sin(4\pi t - 2\pi) = \sin(4\pi t)

→ **But it is not!**

→ **Hence not TI.**

Example: not linear, but time invariant

→ \(y(t) = u(t) \)

→ **Linear?** Scaling: \(u(t) = 1 \) \(\Rightarrow \) \(y(t) = 1 \) \(\Rightarrow \) \(u_{\text{new}}(t) = u(t-2) \) \(\Rightarrow \) **Not linear**

→ **TI?**

\(u_{\text{new}}(t) \) \(\Rightarrow \) \(y_{\text{new}}(t) = \bar{y}_{\text{new}}(t) = u(t-2) \)

\(y(t-2) = u(t-2) \)

\(y(t) \) \(\equiv \) \(u(t-2) \) \(\Rightarrow \) **The same \(\Rightarrow \) TI.**
LINEAR AND TIME INVARIANT (LTI)

EXAMPLE:

\[y(t) = \frac{u(t) - y(t)}{R} \]

LINEAR?

1. SCALING: if \(u_{new}(t) = a u(t) \) and \(y_{new}(t) = a y(t) \), is the eqn. satisfied?

\[C \cdot y_{new}(t) = \frac{u_{new}(t) - y_{new}(t)}{R} \]

\[C \cdot y(t) = \frac{a u(t) - a y(t)}{R} \]

\[C \cdot y(t) = \frac{a (u(t) - y(t))}{R} \]

\[C \cdot y(t) = \frac{u(t) - y(t)}{R} \]

which is true, from defn. of \(y(t) \)

2. SUPERPOSITION: also yes (left as an exercise)

TI?

Take \(u_{new}(t) = u(t-\tau) \)

Does \(y_{new}(t) \) satisfy the system equation?

IN WORDS: \(y_{new}(t) \) is just \(y(t) \) evaluated at \(s = t-\tau \)

or, \(y(t) \) evaluated at \(t = t+\tau \)

\[\frac{d}{dt} y_{new}(s) = \frac{d}{ds} y(s) \bigg|_{s=t-\tau} \]

\[C \cdot \frac{d}{ds} y(s) = \frac{u(s) - y(s)}{R} \]

\[C \cdot \frac{d}{ds} y(s) \bigg|_{s=t-\tau} = \frac{(u(s) - y(s))}{R} \bigg|_{s=t-\tau} \]

\[C \cdot \frac{d}{ds} y(s) \bigg|_{s=t-\tau} = \frac{u(t-\tau) - y(t-\tau)}{R} = \frac{u_{new}(t) - y_{new}(t)}{R} \]

\[\frac{d}{dt} y_{new}(t) = \frac{u_{new}(t) - y_{new}(t)}{R} \]

\[\frac{d}{dt} y_{new}(t) = \frac{u_{new}(t) - y_{new}(t)}{R} \]

SHIFTED WAVEFORMS \(u_{new}(t) \) and \(y_{new}(t) \)

Satisfy the system equation \(\Rightarrow \) IT IS TI
ASIDE: A USEFUL WAY TO INTERPRET (DIFFERENTIAL) EQUATIONS

→ Suppose you have an equation like:

\[\frac{C}{R} \frac{dy(t)}{dt} = \frac{u(t) - y(t)}{R} \]

, with some given input \(u(t) \)

→ Pick some \(y(t) \)

→ Plot the LHS

→ Plot the RHS

→ Do they match?
 → Yes: \(y(t) \) is a solution
 → No: \(y(t) \) is not a solution (try again)

→ Revisit time invariance proof:

1. Start with a solution: \(u(t), y(t) \)

2. \(\text{RHS} = \frac{u(t) - y(t)}{R} \)

 \[\text{LHS} = \frac{C}{R} \frac{dy(t)}{dt} \]

3. Define \(\text{new}(t) = u(t - \tau) \)

 \(y_\text{new}(t) = y(t - \tau) \)

 \[\text{RHS}_{\text{new}}(t) = \frac{u(t - \tau) - y(t - \tau)}{R} = \text{RHS}(t - \tau) \]

 \[\text{LHS}_{\text{new}}(t) = \frac{C}{R} \frac{dy(t - \tau)}{dt} \rightarrow \text{Derivative of the waveform} \ y(t - \tau) \]
STANDARD LINEARIZED STATE-SPACE EQUATION IS ACTUALLY LTI

\[
\frac{d \mathbf{x}(t)}{dt} = A \mathbf{x}(t) + B \mathbf{u}(t), \quad \mathbf{y}(t) = C \mathbf{x}(t) + D \mathbf{u}(t) \quad \text{(c.t.)}
\]

\[
\mathbf{x}[k+1] = A \mathbf{x}[k] + B \mathbf{u}[k], \quad \mathbf{y}[k] = C \mathbf{x}[k] + D \mathbf{u}[k] \quad \text{(d.t.)}
\]

EXACTLY THE SAME REASONING AS FOR THE RC CIRCUIT EXAMPLE SHOWS IT IS LTI

LEFT AS EXERCISES

POINT TO PONDER ON YOUR OWN: HOW DOES THE INITIAL CONDITION FIGURE IN LINEARITY AND TIME INVARIANCE?

HINT: WORK IT OUT FIRST FOR THE RC CIRCUIT EXAMPLE.

THERE MAY BE A HW ON THIS

5. IMPULSE RESPONSES OF LTI SYSTEMS

AMAZING FACT: IF YOU KNOW AN LTI SYSTEM'S IMPULSE RESPONSE, YOU CAN CALCULATE ITS RESPONSE TO ANY INPUT

WHAT IS THE IMPULSE RESPONSE?

(NEXT PAGE)
\[u[k] \rightarrow \text{LTI SYSTEM} \rightarrow y[k] \]

IMPULSE RESPONSE

\[u[k] \rightarrow y[k] \]

\[y[k] = h[k] \]

\[\delta[k] = \begin{cases} 1, & t = 0 \\ 0, & t \neq 0 \end{cases} \quad \text{DISCRETE-TIME IMPULSE (OR DELTA FUNCTION)} \]

CAUSALITY: ANOTHER IMPORTANT SYSTEM PROPERTY

→ **IN WORDS**: THE SYSTEM'S RESPONSE CAN ONLY COME AFTER AN INPUT HAS BEEN APPLIED

→ **IN EQUATIONS**:

1) **TAKE ANY INPUT** \(u[k] \), AND CORRESPONDING OUTPUT \(y[k] \) (i.e., \(u[k] \rightarrow y[k] \))

2) **TAKE ANY NUMBER** \(\tau \)

3) **DEVISE A NEW INPUT** \(u'[k] \) **THAT MATCHES** \(u[k] \) **UP TO** \(t = \tau \), **BUT IS DIFFERENT** FOR \(t \geq \tau \)

\[u'[k] = u[k] \quad \text{FOR} \quad t < \tau, \quad \text{DIFFERENT THEREAFTER}. \]

4) **APPLY** \(u'[k] \) **TO THE SYSTEM TO GET** \(y'[k] \): \(u'[k] \rightarrow y'[k] \)

5) **CHECK**: IS \(y'[k] = y[k] \) **FOR** \(t < \tau \)?

→ **IF YES** — **FOR ALL CHOICES** OF \(u[k] \), \(\tau \) AND \(u'[k] \) — THEN THE SYSTEM IS CAUSAL

→ **IN PICTURES**

INPUT

\[u(t) \rightarrow t \]

CAUSAL RESPONSE

\[u'[t] \rightarrow t \]

RESPONSE NOT CAUSAL

\[u[t] \rightarrow t \]
CHECKING A SYSTEM FOR CAUSALITY CAN BE TEDIOUS

BUT FOR LTI SYSTEMS, IT IS VERY EASY

JUST FIND THE IMPULSE RESPONSE \(h[t] \).

\[h[t] = 0 \quad \text{if} \quad t < 0 \quad \Leftrightarrow \quad \text{CAUSAL} \]

PROOF? LEFT AS EXERCISE

CLAIM: IF YOU KNOW \(h[t] \) FOR AN LTI SYSTEM, YOU CAN CALCULATE \(y[t] \) FOR ANY GIVEN INPUT \(u[t] \).

PROOF: GIVEN ANY \(u[t] \), WE CAN WRITE IT AS A SHIFTED AND SCALED SUM OF IMPULSE FUNCTIONS

\[u[t] = \sum_{i=-\infty}^{\infty} w[i] \delta[t-i] \]

RESPONSE OF SYSTEM TO \(\delta[t-i] \)?

BY TIME INVARIANCE: IT IS \(h[t-i] \), i.e., \(\delta[t-i] \mapsto h[t-i] \)

RESPONSE TO \(u[0] \delta[t-i] \)?

BY SCALING: \(u[0] \delta[t-i] \mapsto u[0] h[t-i] \)

RESPONSE TO \(\sum_{i=-\infty}^{\infty} u[i] h[t-i] = u[t] \)?

BY SUPERPOSITION: \(\sum_{i=-\infty}^{\infty} u[i] h[t-i] \mapsto \sum_{i=-\infty}^{\infty} u[i] h[t-i] \)

OR: IF \(u[t] \mapsto y[t] \), then \(y[t] = \sum_{i=-\infty}^{\infty} u[i] h[t-i] \)
- If the system is causal, then: \(h(t) = 0 \) if \(t < 0 \)

\[
y(t) = \sum_{i=-\infty}^{t} u[i] h(t-i) = \sum_{j=0}^{t} u[t-j] h[j]
\]

This is a discrete-time convolution

\[
y(t) = u[t] \ast h(t)
\]

- Further: if \(u[t] = 0 \) for \(t < 0 \), then

\[
y(t) = \sum_{i=0}^{t} u[i] h(t-i) = \sum_{j=0}^{t} u[t-j] h[j]
\]

- Example: \(x[t+1] = ax[t] + bu[t] \) (with zero initial condition, i.e., \(x[0] = 0 \))

\[
y(t) = cx[t] + du[t]
\]

- Impulse input: \(u(t) = \begin{cases} 1, & t = 0 \\ 0, & \text{otherwise} \end{cases} \)

\[
y(0) = d \cdot u[0] = d
\]

\[
\]

\[
\]

\[
\]

\[
x[t] = a^{t-1} b \quad ; \quad y[t] = cax[t] + du[t] = ca^{t-1} b
\]

Thus \(h(t) = \begin{cases} 0, & \text{if } t = 0 \\ a^{t-1} b, & \text{if } t > 0 \end{cases} \)

- Compound interest example (from long ago): \(S[t+1] = S[t](1 + r/12) + u[t] \)

\[
y(t) = S[t]
\]

\[
a = (1 + r/12), \quad b = 1, \quad c = 1, \quad d = 0
\]

\[
h(t) = (1 + r/12)^{t-1}, \quad t > 0
\]

\[
h(t) = 0 \quad \text{otherwise}
\]

\[
\text{Unstable (but we don't mind in this case)}
\]

Another question to ponder: Can we characterize Gibbs stability/instability in terms of \(h(t) \) alone (we just know \(h(t) \) - nothing else).
\[y[n] = u[n] \ast h[n] = \sum_{i=0}^{n} u[i] h[n-i] \quad \text{(assuming causality + } u[n<0] = 0) \]

- \[y[0] = \sum_{i=0}^{0} u[i] h[0-i] = 3 \]
- \[y[1] = \sum_{i=0}^{1} u[i] h[1-i] = 1 + 4 + 9 + 0 = 14 \]
- \[y[2] = \sum_{i=0}^{2} u[i] h[2-i] = 2 + 6 + 6 = 14 \]
- \[y[3] = \sum_{i=0}^{3} u[i] h[3-i] = 4 + 3 = 7 \]
- \[y[4] = \sum_{i=0}^{4} u[i] h[4-i] = 2 + 6 = 8 \]
- \[y[5] = \sum_{i=0}^{5} u[i] h[5-i] = 3 \]
- \[y[6] \text{ and above : 0} \]
1. Keep a copy of $u(t)$ handy:

![Graphical Convolution Example]

2. Mirror $h(t)$ around $t=0$ and keep handy ($h[-t]$):

![Mirror Example]

3. To get $y(t)$:
 - 3a: Shift $h[-t]$ to the right by t and place over $u(t)$.
 - 3b: Multiply and add up to get $y(t)$.

4. Repeat for every t.

7. Impulse Response and Convolution for C.T. Systems

![Impulse Response Diagram]

→ Apply Dirac δ-function $δ(t) = \begin{cases} \infty, & t=0 \\ 0, & \text{otherwise} \end{cases}$, satisfying $\int_{-\infty}^{\infty} δ(t) \, dt = 1$, any $\epsilon>0$

→ Record output $h(t)$: this is the C.T. impulse response.

→ Then, given any $u(t)$, with $u(t) \rightarrow y(t)$, $y(t) = \int_{-\infty}^{t} u(τ) \, h(t-τ) \, dτ = u(t) \ast h(t)$

→ Proof: Analogous to D.T. case, using properties of Dirac δ.

→ Causality: $h(t) = 0$ for $t<0$ implies $y(t) = \int_{-\infty}^{t} u(τ) \, h(t-τ) \, dτ$