→ WHAT WE DID LAST TIME

→ CIRCUIT ANALYSIS W/ SINEUSOIDAL VOLTAGES/CURRENTS:
 → write sinusoids using complex number + conjugate
 \[x(t) + \overline{x}(t) e^{-j\omega t} \]

→ PHASORS make CAPS look like resistors
 \[i = \frac{v}{R} \rightarrow (\frac{1}{j\omega C}) \]

→ PHASORS GREATLY SIMPLIFY CIRCUIT ANALYSIS (IF ALL ARE SINEUSOIDAL)

→ STARTED LOOKING AT

→ TODAY:

→ CONTINUE WITH IN MORE DETAIL

→ TRANSFER FUNCTIONS: nice way of capturing how INPs/LUTs are related

→ PLOTTING PHASORS AND TRANSFER FUNCTIONS
 → Log-log plots look very nice → why?
 → Bode plots

→ COMPLEX NUMBER MATCONT:

→ MAGNITUDE (OR ABSOLUTE VALUE) OF COMPLEX NUMBER:
 \[|a| = \sqrt{a_x^2 + a_y^2} \]

→ NOTE: \((a)^* = a\overline{a}\)

→ GRAPHICAL DEPICTION OF COMPLEX NO:

→ \(\theta = \text{angle of } a = \angle a\)

→ \(\tan \theta = \frac{a_y}{a_x} \quad \Rightarrow \quad \theta = \tan^{-1} \left(\frac{a_y}{a_x} \right) \)

→ also:
 \[\sin(\theta) = \frac{a_y}{|a|}, \quad \cos(\theta) = \frac{a_x}{|a|} \]

→ NOTE:
 \[a = |a| e^{j\theta} \]

→ POLAR REPRESENTATION
\[a = a_0 + j a_1 \]
\[\text{mag} = |a| \]
\[\text{phase} = \phi \]

Cartesian Representation

Polar Representation

\[(Me^{j\theta}) = M e^{-j\theta} \]

Simple RC Circuit: Phasor Analysis

\[V(t) = V_0 e^{j\omega t} + c.c. \text{ term} \]

Assume

\[x(t) = \sin(\omega t) = X e^{j\omega t} + c.c.t. \]

Unknown: Want to find

\[Z_L = R \]

\[Z_C = \frac{1}{j\omega C} \]

This is a circuit diagram in terms of phasors ("phasor domain")

Makes sense because phasors obey KCL & KVL

Discussion Problem 4

Solving the Circuit

\[KCL @ x: \]

\[\frac{V}{Z_L} = \frac{V}{Z_C} \]

\[X(\frac{Z_C + Z_R}{Z_R}) = \sqrt{V} Z_C \]

\[X = \sqrt{\frac{V}{Z_C + Z_R}} \]

Series Impedance Formula

Impedance Divider Formula

\[X = \frac{1}{\frac{j\omega C}{Z_C + Z_R}} \]

Freq. Domain Transfer Function

\[X = \frac{1}{1 + j\omega RC} \]

\[\text{Call it } H(j\omega) \]

\[\text{Freq. Domain Transfer Function} \]
TRANSFER FUNCTION: GENERALIZATION OF IMPEDANCE/RESISTANCE:

\[Z = \frac{j \omega}{s} \]

Phasors of

\[\frac{-j \omega}{s} \]

Ratio of any two C.E.T quantities

\[\frac{V_2}{V_1} \]

Helps you look at a circuit as a system:

\[V_2 \rightarrow H(s) \rightarrow X \]

\[x \rightarrow H(s) \rightarrow V \]

\[\text{THIS MEANS } \quad x = H(s) \cdot v \]

Now you see that: Impedances are also a special case of transfer Fns.

\[x = H(s) \cdot x \]

Back to:

\[X = \frac{1}{1 + j \omega RC} \]

Polar form

\[X = |X| \cdot \angle \theta \]

Q: Suppose

\[\tilde{V} = \frac{1}{2j} \cdot \frac{1}{2} = \frac{1}{2} e^{-j \frac{\pi}{6}} \]

(i.e. \(v(t) = \sin(\omega t) \)), what is \(x(t) \) ?

\[x(t) = X e^{j \omega t} \]

\[x = \frac{1}{2} e^{-j \frac{\pi}{6}} \]

\[H(s) = \frac{1}{1 + j \omega RC} \]

Let's write \(H(s) \) **in Polar Form**: \(H(s) = M(s) e^{j \theta(s)} \)

\[M(s) = |H(s)|, \quad \theta(s) = \angle H(s) \]

\[X(s) = M(s) \cdot e^{j \theta(s)} \]

\[\text{Real and } \geq 0 \]

\[x(t) = M(s) \cos(\omega t + \theta(s)) \]

\[\theta(s) = \angle \frac{1}{1 + j \omega RC} = \angle \frac{(1 - j \omega RC)}{1 + j \omega RC} = -\tan^{-1}(\omega RC) \]

\[M(s) = \frac{1}{|1 + j \omega RC|} = \frac{1}{\sqrt{1 + \omega^2 RC^2}} \]
DEMO: $v(t)$ vs. $x(t)$ as f changes ($\omega = 2\pi f$)

$\theta(t) = -\tan^{-1}(\omega C)$

VERY CLEAR THAT $M(\omega)$ & $\theta(\omega)$ TOTALLY DESCRIBE $x(t)$

WHY NOT PLOT THEM VS f, TO VISUALLY APPRECIATE HOW THEY CHANGE?

TRANSFER FN PLOT DEMO

VERY CLEAR THAT $M(\omega)$ & $\theta(\omega)$ TOTALLY DESCRIBE $x(t)$

WHY NOT PLOT THEM VS f, TO VISUALLY APPRECIATE HOW THEY CHANGE?

Why is the magnitude plot so nice?

Can we understand this?
Recall: \(H(\omega) = \frac{1}{1 + j\omega RC} = \frac{1}{1 + j2\pi f RC} \)

\[M = \int |H(\omega)| = \frac{1}{\sqrt{1 + 4\pi^2 f^2 RC^2}} = (1 + 4\pi^2 f^2 RC^2)^{-\frac{1}{2}} \]

\[\log M \]

What is \(\log(M) \)?

\[\log(M) = -\frac{1}{2} \log\left(1 + 4\pi^2 f^2 RC^2\right) \]

Consider values \(f \), s.t. \(1 \gg 4\pi^2 f^2 RC^2 \)

Then:

\[1 + 4\pi^2 f^2 RC^2 \approx 1 \]

\[\log(M) \approx -\frac{1}{2} \log(1) = 0 \]

Now, try \(f \) s.t. \(1 \ll 4\pi^2 f^2 RC^2 \)

\[f \gg \frac{1}{2\pi RC} \]

In this regime:

\[1 + 4\pi^2 f^2 RC^2 \approx 4\pi^2 f^2 RC^2 \]

\[\log(M) \approx -\frac{1}{2} \log\left((2\pi f RC)^2\right) = -1 \times \log(2\pi f RC) = -\log(2\pi f RC) - \log(f) = + \log\left(\frac{1}{2\pi RC}\right) + \log(f) \]

At \(f = \frac{1}{2\pi RC} \), this is 0.

Therefore, falls with a slope of -1.

THE ABOVE ARE APPROXIMATIONS, VALID FOR \(f \ll \frac{1}{2\pi RC} \) AND \(f \gg \frac{1}{2\pi RC} \).

What is \(f(2\pi f) \) EXACTLY at \(f = \frac{1}{2\pi RC} \)?

\[M = \frac{1}{\sqrt{1 + (2\pi RC)^2 f^2}} = \frac{1}{\sqrt{1 + 4\pi^2 RC^2 \frac{1}{(2\pi RC)^2}}} = \frac{1}{\sqrt{1 + 1}} = \frac{1}{\sqrt{2}} \approx 0.7071 \]

\[\Theta = -\tan^{-1}(\omega RC) = -\tan^{-1}(2\pi RC f) = -\tan^{-1}(1) = -45^\circ \]

IF YOU WANTED TO QUICKLY SKETCH THE BODE PLOT OF \(H(\omega f) = \frac{1}{1 + j\omega RC} \).
SUMMARY (PHASORS + TRANSFER FUNCS. + BODE PLOTS):

PHASORS: EASY CFT ANALYSIS FOR SINEWODAL SIGNALS!

RATIO OF ANY 2 CFT QUANTITIES: TRANSFER FUNCTION

→ Usually denoted as \(H(f) = H(2\pi f) \)

YOU CAN RECOVER TIME-DOMAIN WAVEFORMS EASILY FROM MAG/PHASE \(\frac{N_f}{H(2\pi f)} \)

PLOT MAG/PHASE \(\frac{N_f}{H(2\pi f)} \) ON LOG-LOG AND LOG-LIN SCALE:

→ **BODE PLOT.**

→ **MAG APPROXIMATED WELL WITH FLAT AND \(-1\) SLOPE STRAIGHT LINE SEGMENTS.**

\[\frac{N_f}{H(2\pi f)} = \frac{1}{\sqrt{2}} \quad \alpha = \frac{1}{2\pi f} \]

→ **PHASE**

\[\begin{align*}
\phi &= -45^\circ \quad \alpha = \frac{1}{2\pi f} \\
\alpha &\to 0^\circ \quad \phi &\to \infty \\
\end{align*} \]

→ **FROM PHASORS TO TIME-DOMAIN: GEOMETRICAL VIEW**

\[x(t) = \sum x(t) e^{j\omega t} + \text{c.c. term} \]

\[= M e^{j(\omega t + \theta)} + \text{c.c. term} \]

** slider demo:**

\[X(f) = M e^{j(\omega t + \theta)} + M e^{-j(\omega t + \theta)} \]

→ **MULTIPLY BY 2**

→ **YOU’VE GOT \(x(t) \)!**
→ PHASOR SOLUTIONS vs DIFFERENTIAL EQN SOLUTIONS:

\[\frac{d}{dt} x(t) = \frac{v(t) - x(t)}{RC} \]

\[X = \frac{V}{1 + j2\pi fRC} \rightarrow x(t) = M(f) \sin(2\pi ft + \phi(f)) \]

→ can specify IC: \(x(0) = x_0 \)

→ THE QUESTION IS: IS \(x(t) \) from solving the ODE the same as ??

→ DEMO: ODE NUMERICAL SOLN vs PHASOR-derived solution

→ with various ICs.

→ PHASOR ANALYSIS AUTOMATICALLY FINDS THE IC THAT

MAKES THE ODE SOLUTION A PERFECT SINE WAVE → NO "STARTUP TRANSIENTS"

STEINMETZ BODE