Parallel and Series Resistors

Resistors in series

Consider the single-loop circuit to the right in which a voltage source vs is connected in series with five resistors. The KVL equation is given by :

$$
-v_{s}+i_{s} R_{1}+i_{s} R_{2}+i_{s} R_{3}+i_{s} R_{4}+i_{s} R_{5}=0
$$

This can be cleaned up,

$$
\begin{aligned}
& v_{s}=i_{s}\left(R_{1}+R_{2}+R_{3}+R_{4}+R_{5}\right) \\
& v_{s}=i_{s} R_{e q} \\
& \boldsymbol{R}_{\text {eq }}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}+\boldsymbol{R}_{\mathbf{3}}+\boldsymbol{R}_{\mathbf{4}}+\boldsymbol{R}_{\mathbf{5}}
\end{aligned}
$$

From the perspective of the rest of the circuit:
multiple resistors connected in series (experiencing the same current) can be combined into a single equivalent resistor $\mathrm{R}_{\text {eq }}$ whose resistance is equal to the sum of all of their individual resistances

(b) $R_{\text {eq }}=R_{1}+R_{2}+R_{3}+R_{4}+R_{5}$

Resistors in parallel

Consider the multi-branch circuit to the right in which a voltage source vs is connected in parallel with three resistors. From KCL we know :

$$
i_{s}=i_{1}+i_{2}+i_{3}
$$

Applying Ohm's Law for each resistor,

$$
\begin{gathered}
i_{s}=\frac{v_{s}}{R_{1}}+\frac{v_{s}}{R_{2}}+\frac{v_{s}}{R_{3}} \\
i_{s}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) v_{s} \\
\frac{\mathbf{1}}{\boldsymbol{R}_{\boldsymbol{e q}}}=\frac{\mathbf{1}}{\boldsymbol{R}_{\mathbf{1}}}+\frac{\mathbf{1}}{\mathbf{R}_{\mathbf{2}}}+\frac{\mathbf{1}}{\boldsymbol{R}_{\mathbf{3}}}
\end{gathered}
$$

From the perspective of the rest of the circuit:
multiple resistors connected in parallel (experiencing the same voltage) can be combined into a single equivalent resistor $R_{\text {eq }}$ whose resistance is equal to the reciprocal of the sum of the reciprocal individual resistances

(a) Original circuit

(b) Equivalent circuit

