1 Controller Canonical Form - Introduction

a) Show that a discrete-time system in controllable canonical form is essentially a higher order scalar recurrence relation with scalar input.

Answer

Let our system be defined as follows:

\[

t(t + 1) = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & \cdots & a_{n-1} & a_n
\end{bmatrix} t(t) + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} u(t)
\]

\[\Rightarrow x_1(t + 1) = x_2(t)\]
\[x_2(t + 1) = x_3(t)\]
\[x_3(t + 1) = x_4(t)\]
\[\vdots\]
\[x_{n-1}(t + 1) = x_n(t)\]
\[x_n(t + 1) = \sum_{i=1}^{n} a_i x_i(t) + u(t)\]

To further simplify, let’s write \(x_1(t) = y(t)\). Hence,

\[x_1(t) = y(t)\]
\[x_2(t) = y(t + 1)\]
\[x_3(t) = y(t + 2)\]
\[\vdots\]
\[x_n(t) = y(t + n - 1)\]

With the above substitutions, we can write our discrete time system as an \(n^{th}\) order recurrence relation as follows:

\[x_n(t + 1) = y(t + n) = \sum_{i=1}^{n} a_i y(t + i - 1) + u(t)\]

b) Show that a continuous-time system in controllable canonical form is essentially a higher order scalar differential equation with scalar input.
Answer

Let our system be defined as follows:

$$\frac{d}{dt} \mathbf{x}(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \ldots & a_{n-1} & a_n \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} u(t)$$

Thus,

$$\frac{d}{dt} x_1(t) = x_2(t)$$
$$\frac{d}{dt} x_2(t) = x_3(t)$$
$$\frac{d}{dt} x_3(t) = x_4(t)$$
$$\vdots$$
$$\frac{d}{dt} x_{n-1}(t) = x_n(t)$$
$$\frac{d}{dt} x_n(t) = \sum_{i=1}^{n} a_i x_i(t) + u(t)$$

To further simplify, again let’s write $x_1(t) = y(t)$. Hence,

$$x_1(t) = y(t)$$
$$x_2(t) = \frac{d}{dt} y(t)$$
$$x_3(t) = \frac{d^2}{dt^2} y(t)$$
$$\vdots$$
$$x_n(t) = \frac{d^{n-1}}{dt^{n-1}} y(t)$$

With the above substitutions, we can write our continuous time system as an n^{th} order differential equation as follows:

$$\frac{d}{dt} x_n(t) = \frac{d^n}{dt^n} y = \sum_{i=1}^{n} a_i \frac{d^{i-1}}{dt^{i-1}} y(t) + u(t)$$

Where, $\frac{d^n}{dt^n} \equiv 1$. Note the above differential equation will be homogenous if $u(t) = 0$ for all t
2 Controller Canonical Form - Eigenvalues Placement

Consider the following linear discrete time system

\[
\dot{x}(t + 1) = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -3 & -4
\end{bmatrix} x(t) + \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} u(t)
\]

a) Is this system controllable?

Answer

We calculate

\[C = [B, AB, A^2B] = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -4 \\ 1 & -4 & 13 \end{bmatrix} \]

Observe that \(C \) matrix is full rank and hence our system is controllable.

b) Is the linear discrete time system stable?

Answer

Because the matrix \(A \) is in controllable canonical form, we can find the characteristic polynomial to be \(\lambda^3 + 4\lambda^2 + 3\lambda \). From that polynomial we calculate the eigenvalues of matrix \(A \):

\[
0 = \lambda^3 + 4\lambda^2 + 3\lambda = \lambda(\lambda + 3)(\lambda + 1)
\]

The eigenvalues are then 0, -3, -1. Since the eigenvalue at -3 is outside the unit circle, this system is unstable.

c) Using state feedback \(u(t) = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} \dot{x}(t) \) place the eigenvalues at 0, 1/2, -1/2.

Answer

The closed loop system is given by

\[
A + BK = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
k_1 & k_2 - 3 & k_3 - 4
\end{bmatrix}
\]

which has characteristic polynomial \(\lambda^3 + (4 - k_3)\lambda^2 + (3 - k_2)\lambda - k_1 \). To place the eigenvalues at 0, 1/2, -1/2, the desired characteristic polynomial is \(\lambda(\lambda - 1/2)(\lambda + 1/2) = \lambda^3 - 1/4 \la \). So we should choose \(k_1 = 0, k_2 = 13/4, k_3 = 4 \).