Team 3 Report

Frederick Chang, Donovan Lee, Joshua Schrier

Hardware—Sensors

- Standard induction setup, 2 sensors, expanded to 4
- Velocity detection using all-in-one Hamamatsu
 - Reduced part count
- 6x 2-stage non-inverting amplifier
 - Tunable low-pass filtering, gain; ability to expand sensor model

Hardware—Actuators

- Upgraded servo
 - KO Propo 2343 Digital
 - Slew rate 0.08ms/60deg
 - High Speed Response mode
- H-bridge motor driver
 - Faster braking
- Velocity encoder painted directly on motor gear
 - Reduced part count

Hardware—User Interface

- LCD panel/keypad
 - Long initial time investment
 - Fast debugging,
 parameter setting
 - On-track calibration
- Piezo Speaker
 - Useful for initial debugging, easy to implement (PWM)
 - Not as much information density as LEDs

Hardware—Construction

- Styrofoam structure
 - Rapid prototyping
 - Cut with hot wire
- Fiberglass coating
 - Make styrofoam permanent
- Carbon fiber rods
 - Lightweight, cheap
- Rubber bands/zip-ties
 - Quickly change structure
 - No large investment in a bad structure

Hardware—Iterations

Sensors

- Startup calibration over [-10,+10] cm range
- Linear interpolation between calibration values in mm
- Source of error: parallax when calibrating

Software

- Initial calibration over [-10,+10] cm, linear interpolation between data points
- User Interface
 - State-machine based
 - Turns off Interrupts while in UI handling
 - All gains, parameters tunable using UI
 - Sensor readings, y_a interpretations available
- Servo control PI parameters stored as float, conversion to integer values; all other values operated as 16-bit integers
- PD control—no track memorization

Control

- Velocity Control (P)
 - Kp = 63.6 duty% / (m/s)
- Servo Control (PD)
 - Kp = 69.8 rad/m
 - Kd = 0.00291 rad/(m/s)
- Steering state machine
 - On loss of track, use last known state to steer
 - Reduce speed if off track
- Straightaway detection
 - Use front sensors ("hardware lookahead")
 - If $\{|y_a|, |y_a_dot|, |y_a_front|\}$ < error, increase speed
 - Separate servo Kp, Kd parameters at high speed

Performance

Modifications for NATCAR

- Smoother controller
 - Change velocity smoothly depending on tracking quality
 - Digital filtering of control to reduce oscillations
- 4WD, full suspension chassis (TC3)
- Decrease resolution dropoff after ±8 cm
- Broader frequency response of sensors
- Track memorization
 - Step 1: Feedforward velocity
 - Step 2: Feedforward orientation
 - Memory: 2ms sample interval over 40 seconds,
 ~40 kbytes storage
- "Lasers" to destroy DeVry, Davis cars

Credits

- H-Bridge, Power Sch JS
- H-bridge/Pwr PCB FC
- Construction DL
- Sensor Hardware DL
- Sensor Software JS
- UI FC
- Control ALL
- Debugging & Tuning ALL

