SMPS Recap

Practical Application

Summary
Switching Power Supply Recap
Boost Converter Circuit

- DC-to-DC switching power supply generating output voltage higher than input
- Uses inductor as storage element
- Efficient, no losses in ideal case
 - Non-idealities: wire resistance, diode and transistor losses
- Capacitive filter to smooth output voltage
Boost Converter Operation

- Inductor charges when switch is closed
 - Energy stored in inductor by magnetic field, current through inductor increases
 - Diode prevents higher output voltage from flowing back to source

Switch Closed
Boost Converter Operation

- Inductor charges when switch is closed
 - Energy stored in inductor by magnetic field, current through inductor increases
 - Diode prevents higher output voltage from flowing back to source
- Inductor discharges when switch is open
 - Magnetic field dissipates, current through inductor decreases
 - Inductor voltage polarity reversed, generating voltage over input
 - Current flows through diode, output capacitor charged
Boost Converter Control

- If switch cycled fast enough, inductor does not fully discharge
- Can do a lot of math, but output voltage is function of duty cycle \(D \)
 - \(V_{out} = \frac{1}{1-D} V_{in} \)
So I’ve got a boost converter set up...

- One probe on the switch
- Another probe on the output

It’s running at steady-state
So I’ve got a boost converter set up...
 - One probe on the switch
 - Another probe on the output

It’s running at steady-state

Which scope waveform is the switch?
Check your Understanding (Live Demo Edition!)

- So I’ve got a boost converter set up...
 - One probe on the switch
 - Another probe on the output
- It’s running at steady-state
- Which scope waveform is the switch?
- Is the output waveform what you expect?
So I’ve got a boost converter set up…
 ▶ One probe on the switch
 ▶ Another probe on the output

It’s running at steady-state

Which scope waveform is the switch?

Is the output waveform what you expect?

On the switch waveform…
 ▶ Which part is the switch closed?
Check your Understanding (Live Demo Edition!)

- So I’ve got a boost converter set up...
 - One probe on the switch
 - Another probe on the output
- It’s running at steady-state
- Which scope waveform is the switch?
- Is the output waveform what you expect?
- On the switch waveform...
 - Which part is the switch closed?
 - Which part is the switch opened?
So I’ve got a boost converter set up...
- One probe on the switch
- Another probe on the output
- A magic chip regulates the output to 12v
 - Duty cycle is adjusted to maintain voltage
 - Remember: $V_{out} = \frac{1}{1-D}V_{in}$
- What happens if I...

Boost Circuit
So I’ve got a boost converter set up...
 - One probe on the switch
 - Another probe on the output

A magic chip regulates the output to 12v
 - Duty cycle is adjusted to maintain voltage
 - Remember: \(V_{out} = \frac{1}{1-D} V_{in} \)

What happens if I...
 - Increase the input voltage?
So I’ve got a boost converter set up...
- One probe on the switch
- Another probe on the output
- A magic chip regulates the output to 12v
 - Duty cycle is adjusted to maintain voltage
 - Remember: $V_{out} = \frac{1}{1-D} V_{in}$
- What happens if I...
 - Increase the input voltage?
 - Duty cycle decreases, current decreases
So I’ve got a boost converter set up...
- One probe on the switch
- Another probe on the output
- A magic chip regulates the output to 12v
 - Duty cycle is adjusted to maintain voltage
 - Remember: $V_{out} = \frac{1}{1-D}V_{in}$
- What happens if I...
 - Increase the input voltage?
 - Duty cycle decreases, current decreases
 - Decrease the input voltage?
So I’ve got a boost converter set up...
 - One probe on the switch
 - Another probe on the output

A magic chip regulates the output to 12v
 - Duty cycle is adjusted to maintain voltage
 - Remember: $V_{out} = \frac{1}{1-D} V_{in}$

What happens if I...
 - Increase the input voltage?
 - Duty cycle decreases, current decreases
 - Decrease the input voltage?
 - Duty cycle increases, current increases
Buck Converter Circuit (for your reference)

- DC-to-DC switching power supply generating output voltage lower than input
- Similar principle to boost converter
 - \(V_{\text{out}} = D V_{\text{in}} \)
- Also exists buck-boost converters, where output can be greater than, equal to, or less than the input
Questions?

got it?

power supply pros, right?
Practical Application
Automatic Feedback Control

- So, what is the switch-controlling magic?
- Feedback control: chip has logic to regulate the voltage on the feedback pin to an internal 1.245v reference
- Pop quiz: what resistor divider do I use to regulate the output to 7.2v?
 - Use 8.2kΩ for the lower resistor
Automatic Feedback Control

- So, what is the switch-controlling magic?
- Feedback control: chip has logic to regulate the voltage on the feedback pin to an internal 1.245v reference
- Pop quiz: what resistor divider do I use to regulate the output to 7.2v?
 - Use 8.2kΩ for the lower resistor
 - ... and 39kΩ For the higher resistor
 - Why these numbers? Preferred numbers!

LT1370 Block Diagram

Application circuit
source: datasheet, Linear Technology
Noise (Live Demo Edition!)

- Let’s take a closer look at the output.
 - Specifically, note the ripple near the switch toggling.
- What issues might this cause?
- What do you think are some ways to reduce noise?

Boost Circuit
Capacitors at High Frequencies (Live Demo Edition!)

- Output smoothing is critical for proper operation, depends on output capacitors
- Not all capacitors are created equal
 - Ceramic, tantalum, aluminum, ...
- Live demo
 - Expect both filters to behave the same:
 \[
 Gain = \frac{1}{\sqrt{1+(\omega RC)^2}}, \quad \phi = \text{atan}(-\omega RC)
 \]
 (gain and phase dependent on only RC)

RC filter demo circuit
Capacitors at High Frequencies (Live Demo Edition!)

- Output smoothing is critical for proper operation, depends on output capacitors
- Not all capacitors are created equal
 - Ceramic, tantalum, aluminum, ...
- Live demo
 - Expect both filters to behave the same:
 \[
 Gain = \frac{1}{\sqrt{1+(\omega RC)^2}}, \quad \phi = \arctan(-\omega RC)
 \]
 (gain and phase dependent on only RC)
 - As frequency increases, behavior diverges
 - Capacitors become inductive - no longer a good filter

RC filter demo circuit

Ducky (UCB EECS) Mechatronics Design Lab 11 & 12 Feb 2015 (Week 4)
Practical Application

Layout Guidelines

- Switching power supplies are layout sensitive
 - Part placement and routing matters!
- Tips from the datasheet:
 - Keep output diode, switch pin, output capacitor as short as possible
 - Minimize length and area of switch pin
 - Minimize high frequency current path (switch, diode, capacitor)
- Read the datasheet!

Figure 3. Layout Considerations—R Package

Recommended layout
(uses surface-mount components)
source: datasheet, Linear Technology
Summary

Boost converters step up a DC voltage to a higher DC voltage
LT1370 uses feedback control to do voltage regulation
Follow recommended layout guidelines during PCB design

Parts Handout
Get a battery and charger!
 Please, keep explosions and flames to a minimum

Office hours for the rest of the section
PCB deadline coming up in a week! Need help? Get it now!
Need tips on mechanical fabrication? Get some here!