Due by 6 pm Fri. March 24 on BCourses in .pdf.

(One assignment per team.)

For this assignment you will be using V-rep for dynamic simulation of a car. (V-rep Pro EDU V3.3 can be downloaded for Mac/Ubuntu/Windows at

http://www.coppeliarobotics.com/downloads.html. The car model carscale_oneLoop.ttt is on Piazza. V-rep is the server, and you will modify a Python function control_loop() to drive the simulated car. The simulator estimates lat_err = yDist = y_a , the lateral error from the track at a distance approximately 2 car lengths in front, and takes 2 inputs: 1) commanded steering angle steerAngle = δ , and 2) longitudinal velocity set using set using car.set_speed(3.0). The V-rep simulation server needs to start before carTest.py. carTest.py will run the car but it is not tuned. You will modify and extend the code to get a good car controller. The simulator runs ok at 10 ms time step (dynamics are updated at 10X).

For all plots, time axes should be in seconds, and lateral errors in m or cm. A Matlab plotting tool vrep_plot.m is provided in the .zip file. Combine all plots into a single .pdf file to upload.

For each part below, plot on 1 page a) actual x vs y position of car b) lateral error y_a as function of time, c) steering angle δ as function of time. For part 4, below, also plot d) car longitudinal velocity as a function of time. For each part, list constants used. (k_p should have units of radians/meter, etc.)

(25 pts) 1. Steering Simulation- proportional control

- (22) a. Using pure position control, $\delta = k_p y_a$, choose a fixed speed V and k_p that allows the car to successfully complete the track without hitting any cone(s). Report k_p and V.
- (3) b. Specify worst-case overshoot (cm), and note on plots where this occurs.

(25 pts) 2. Steering Simulation- proportional + derivative control

- (20) a. Using PD control $\delta = k_p y_a + k_d \dot{y}_a$, choose a fixed speed that allows the car successfully complete the track without hitting any cone(s). Report k_p , k_d , and V. (Estimate $\dot{y}_a \approx \frac{y_a[n] y_a[n-1]}{20ms}$.)
- (3) b. Specify worst-case overshoot (cm), and note on plots where this occurs.
- (2) c. Briefly comment on any differences in performance observed between P and PD type control, such as overshoot or maximum speed.

(25 pts) 3. Steering steering servo speed limit

(23) a. The default steering servo is set unrealistically fast (line 66 in carTest.py): self.steering_slew_rate = 600/0.16.

Change to a more realistic rate of 60 degrees in 160 ms, and repeat question 2.

(2) b. Briefly comment on any differences in performance observed between fast and slow steering servo response.

(25 pts) 4. Steering simulation with PD, quantization, and speed control

- (15) a. Modify carTest.py to use car speed control rather than a fixed speed. For example, decelerate when the lateral error is large, and speed up when tracking well. (Or choose a velocity setpoint depending on error.) Plot best car performance.
- (5) b. Specify the velocity controller used, and include relevent controller code section.
- (5) c. What is worst case overshoot? What is laptime? Has the best time improved compared to fixed car speed?