Buck Converter (draft 2/20/2017) v2

Output voltage is less than input voltage

For simplicity, assume i_L goes from i_{max} to i_{min} in a linear fashion in time T_{off} , with a change of $\Delta i = i_{max} - i_{min}$ (>0). Also assume V_{out} is approximately constant. During T_{off} the instantaneous power delivered to the capacitor and load from the inductor in series with V_{in} is $p(t) = -i_L(t)V_L(t)$. (Note V_L is negative during off, so $-V_L = V_{out}$, for ideal diode.) The inductor voltage during T_{off} is assumed constant: $V_L(t) = -L \Delta i / T_{off}$. Also $i_{av} \sim V_{out}/R$.

When switch is open, the work delivered per cycle from inductor to load is (assuming $i_L = i_{av}$), and $V_L < 0$:

$$W_{\rm off} = -i_L V_L T_{\rm off} = -i_L (L \Delta i / T_{\rm off}) T_{\rm off} = i_L L \Delta i$$

When switch is closed, $\Delta i = i_{max} - i_{min}$ (>0), and V_L >0 the work delivered through inductor per cycle is:

$$W_{\text{on}} \! = i_L \, (V_{\text{in}} \! - \! V_L) T_{\text{on}} \; = i_L \, (V_{\text{in}} \! - \! \Delta i \; L / T_{\text{on}}) T_{\text{on}} = -i_L \, L \; \Delta i \, + \, i_L \, V_{\text{in}} \, T_{\text{on}}$$

The time average power delivered to the load (through the inductor) is W/T=

$$P_{ave} = \left(W_{off} + W_{on}\right) / \left(T_{on} + T_{off}\right) = i_{L} \left(L \Delta i - L \Delta i + V_{in} T_{on}\right) / \left(T_{on} + T_{off}\right) = i_{L} V_{in} T_{on} / \left(T_{on} + T_{off}\right) = V_{out}^{2} / R$$

Note that there is a contribution from energy stored in the inductor and the power provided by battery.

Note that L is chosen based frequency. Consider V_{in} =10V, V_{out} = 2V, R=1 ohm. Then i_{av} = 2 amps, and V_L = 8V with switch on and V_L = -2V with switch off. Thus $4T_{on}$ = T_{off} . For switching period T = T_{on} + T_{off} = 4 us (LM2678), we might choose L = 33 uH (bigger L means smaller di/dt). Then Δi = T_{on} (8V)/L = 0.2 amps. Thus i_{max} = 2.1 amps and i_{min} = 1.9 amps.