EECS192 Lecture 12 Apr. 11, 2017

Notes:

- 1. Mon. 4/25: **(530-700 pm)** round 2 (NATCAR rules)
 - 1. 13 makes first turn
 - 2. 15 half track in < 5 minutes
 - 3. 18 whole track in less than 1 minute
 - > 18 For cars which are fast and/or well-stabilized
- CalDay Sat. April 22 @ UCB, 1000-1200 SDH (in Cory class room if rain)
- Quiz 5 on 4/11 on steering control

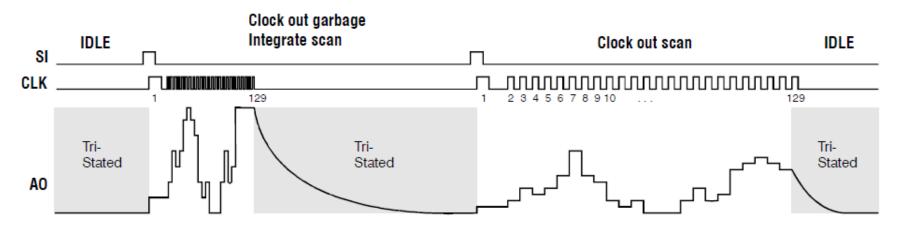
Topics

- Round 1 results
- Progress report notes: Hamamatsu
- Hardware Robustness
- C.O.P. Watchdog
- Software Robustness
- Supervisor Systems
- Digital Filtering

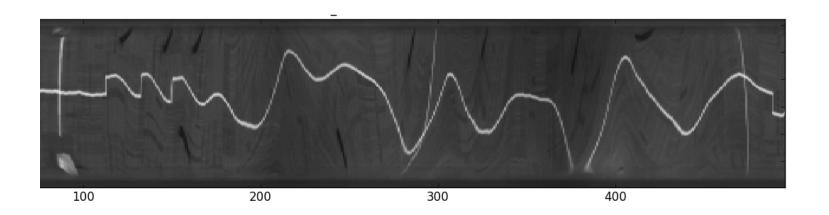
Spring 2017 Round 1 Results

```
¾ track (8.5 pts): team 1, 10
½ track (8 pts): team 8,9
¼ track (7.5): team 5,12
2 turns, or turn+steps (7 pts):2,3
1 turn (6.5 pts): 4,6,7
Moves (6 pts): 11
```

Lessons Learned


Lessons Learned:

- Extreme lighting variation →
 - Need AGC,
 - steering hold,
 - Autocalibration
 - Sun glasses ...
- Camera mechanics
- ? Camera Noise level?
- Track vs terrain features
- Self-shadow

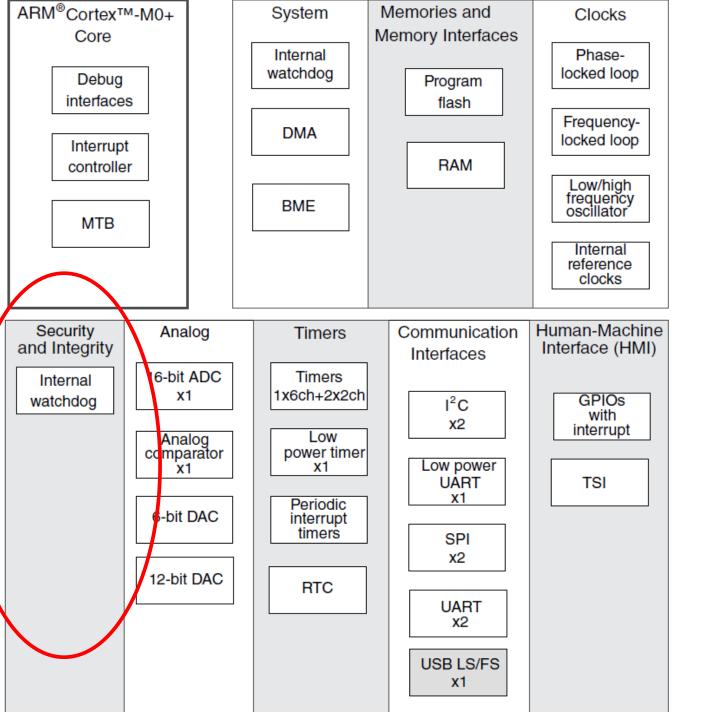

What worked well:

- Velocity control
- Stability decent
- Car electromechanics
- No DoA cars
- No random resets or runaway cars
- No tank cars
- Crossings ok vs crack not

Automatic Gain Control

In all the discussion that follows, we will be using one-shot imaging.

Progress report notes


- Hamamatsu: 5 volts, be careful
- Motor snubber caps

Hardware Robustness

- Mechanical oscillations
- Lock washers
- Strain relief on connections
 - (stranded vs solid core wire)

C.O.P. Watchdog timer

- Despite extensive software and hardware testing, faults will still occur in real devices. Even momentary noise spikes on a power supply can lock up a processor occasionally. Such events will occur on the power grid several times a year. Watchdog timers provide a last line of defense to prevent system failure with minimal hardware cost.
- https://developer.mbed.org/cookbook/Watch Dog-Timer

128K Flash 16K RAM 32 bit ARM 7 core 48 MHz A/D, D/A 2x SPI Touch sense input Timers

3.4.10 Computer Operating Properly (COP) Watchdog Configuration

This section summarizes how the module has been configured in the chip.

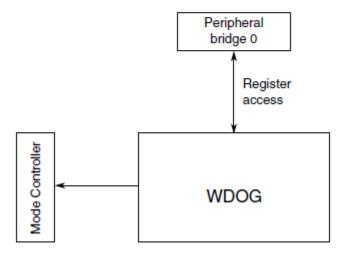


Figure 3-13. COP watchdog configuration

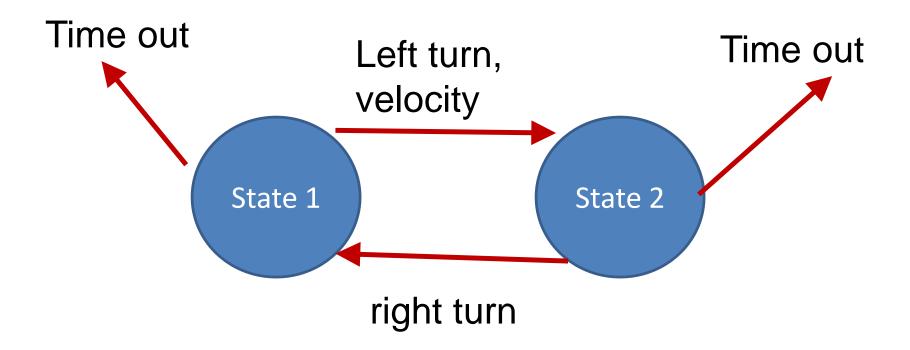
Address: 4007_F000h base + 0h offset = 4007_F000h

Bit	7	6	5	4	3	2	1	0
Read	POR	PIN	WDOG	0	LOL	LOC	LVD	WAKEUP
Write								
Reset	1	0	0	0	0	0	1	0

RCM_SRS0 field descriptions

Field	Description						
7	Power-On Reset						
POR	Indicates a secret has been accorded to the second and detection levie. Decrease the internal country with the						
	Indicates a reset has been caused by the power-on detection logic. Because the internal supply voltage was ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while the internal supply was below the LVD threshold.						
	0 Reset not caused by POR						
	1 Reset caused by POR						
6 PIN	External Reset Pin						
	Indicates a reset has been caused by an active-low level on the external RESET pin.						
	0 Reset not caused by external reset pin						
	1 Reset caused by external reset pin						
5	Watchdog						
WDOG	Indicates a react has been equated by the watchded timer Computer Operating Property (COP) timing or						
	Indicates a reset has been caused by the watchdog timer Computer Operating Properly (COP) timing ou This reset source can be blocked by disabling the COP watchdog: write 00 to the SIM's COPC[COPT]						
	field.						
	0 Reset not caused by watchdog timeout						
	1 Reset caused by watchdog timeout						
1	This field is reserved						

Table 3-23. COP configuration options (continued)


Control	Bits	Clock Source	COP Window Opens	COP Overflow Count	
COPCTRL[COPCLKS]	COPCTRL[COPT]		(COPCTRL[COPW]=1)		
0	10	1 kHz	N/A	2 ⁸ cycles (256 ms)	
0	11	1 kHz	N/A	2 ¹⁰ cycles (1024 ms)	
1	01	Bus	6,144 cycles	2 ¹³ cycles	
1	10	Bus	49,152 cycles	2 ¹⁶ cycles	
1	11	Bus	196,608 cycles	2 ¹⁸ cycles	

Need to change systemInit.

Software Robustness

- Checksums for bit rot
- Watch dog timer/computer operating properly COP
- Lost track detection
- Autocalibration at startup
 - (sanity check for steering angle vs line error)
 - AGC
 - State Observer/estimator
 - Discrete State observer

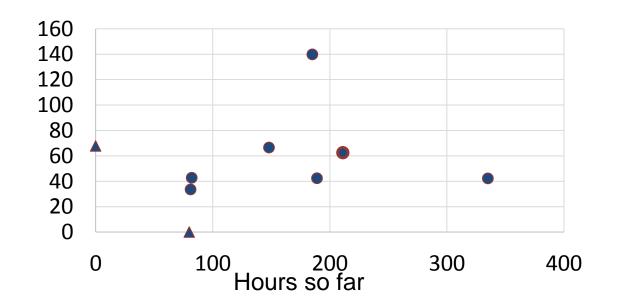
FSM Recognizer (generalized WDT)

Digital Filtering

Moving average

$$-y1[n] = (y[n-2]+y[n-1]+y[n])/3$$

- Median filter (outlier rejection)
- Notch filter (mechanical vibration)
 - y[n] = (x[n-2]+2x[n-1]+x[n])/4


Model based filtering (or Kalman filter)

(on board)

Round 1 Results

- **2015**: 48.14, 46.56, 67.93, DNF, 53.72, 85.51, 40.37, 40.24, 41.61, DNF, 62.88, 45.59
 - **2016**: 33.61, 42.32, 42.48, 42.83, 55.14, 62.59, 66.72, 67.69, 140.01, DNF,

Round 1 time

