EECS192 Lecture 4 Feb. 7, 2017

Notes:

Check off-

- 2/10: Motor drive/stall, steering servo
- Quiz 2: power MOSFET/motor drive Tues 2/14

Topics

- Polarized capacitor
- Project proposal feedback
- Quiz 1
- RC servo basics
- PWM and motor drive
- Power supplies \bullet
- **Boost converter**
- **Buck Converter**

47uF, 16V electrolytic, polarized Not all same- ESR...

Project proposal feedback

Motor Driver

Schematic

- Estop: what to switch?
- Motor drive from battery, not voltage regulator
- Snubbing capacitors and diode
- Drive/brake/enable/dir- shoot through protection
- Conventions: L->R, top to bottom

Circuit Layout

- Mounting holes
- Big wires, short distances
- QFN vs SOIC package
- Heat sinks
- Estop switch
- Signal connectors- include ground
- Power connectors

Software

• Threads vs interrupts vs main() vs RtosTimer

PWM for Steering Servo

Gotchas:

- 4.8 or 6V, (Not 7.2V!)
- max current 2A
- May be sensitive to noise on supply line
- Performance depends on voltage

PWM

https://developer.mbed.org/handbook/PwmOut

	PwmOut (PinName pin) Create a PwmOut connected to the specified pin.
void	write (float value) Set the ouput duty-cycle, specified as a percentage (float)
float	read () Return the current output duty-cycle setting, measured as a percentage (float)
void	period (float seconds) Set the PWM period, specified in seconds (float), keeping the duty cycle the same.
void	<pre>period_ms (int ms) Set the PWM period, specified in milli-seconds (int), keeping the duty cycle the same.</pre>
void	<pre>period_us (int us) Set the PWM period, specified in micro-seconds (int), keeping the duty cycle the same.</pre>
void	pulsewidth (float seconds) Set the PWM pulsewidth, specified in seconds (float), keeping the period the same.
void	<pre>pulsewidth_ms (int ms) Set the PWM pulsewidth, specified in milli-seconds (int), keeping the period the same.</pre>
void	<pre>pulsewidth_us (int us) Set the PWM pulsewidth, specified in micro-seconds (int), keeping the period the same.</pre>
PwmOut &	operator= (float value) A operator shorthand for write()
	operator float () An operator shorthand for read()

 $<i_m > = (T/T_o) i_{max}$ Is i_{max} constant?

Power supply wiring- BAD!

On board: what does this look like electrically (as a schematic)?

Power supply wiring- Star is better!

Low power ground

On board: what does this look like electrically (as a schematic)?

``7.2V" supply waveforms with motor PWM

- Battery model
- Waveforms on board
- Wiring to reduce voltage resistance effects of wiring

Boost Converter

Waveforms on board (also see boost converter notes)

Boost Converter- LT1370

LT1370

BLOCK DIAGRAM

5V to 12V Boost Converter

Buck Converter LM2678

Buck Converter

https://en.wikipedia.org/wiki/Buck_converter