EECS192 Lecture 6 Feb. 21, 2017

Notes:

- 1. Check off-
- PCB design due (Gerbers) Tues 2/21 midnight
- PCB peer review (1 each, should get 2 reviews. 1 pt)
- Peer review here
- Final rework due Thurs 2/23 900 pm
- 2. 2/21 Quiz 3: switch mode power supply and regulator
- 3. CalDay Sat. April 22 @ UCB,
- 4. 3/3 : benchtop line tracking (line camera+servo)

Topics

- PCB tip ohms/square
- Debug
- Analog Interface
- Latchup gotcha
- Line sensor
- iPython notebook (under Resources on Piazza) -later this week

Ohms/square

For some given depth,	
resistance is directly in	N R
proportion to length an	a
inversely proportional	
to width.	
Therefore, we can rate	
the resistive material of	
constant depth in terms	6
of ohms per square.	

Depth

Cu Weight oz.	Thickness mm(mils)	mΩ/Square 25°C	mΩ/Square 100°C
1/2	.02 (0.7)	1.0	1.3
1	.04 (1.4)	0.5	0.65
2	.07 (2.8)	0.25	0.36
4	.13 (5.3)	0.13	0.18

http://www.edn.com/design/components-and-packaging/4411971/Countingsquares--A-method-to-quickly-estimate-PWB-trace-resistance

Debugging

- See handout: <u>http://inst.eecs.berkeley.edu/~ee192/sp17/do</u> <u>cs/debug-checklist.pdf</u>
- Divide and Conquer N → log N
 - Model
 - Measure/observe
 - Hypothesize reason for difference
 - Control and observe

Mentally very challenging, rested for best results, with frequent breaks

Analog/Digital Overview

Figure 28-1. ADC block diagram

Analog Input https://developer.mbed.org/handbook/AnalogIn

all mood rindi		Import library
Public Membe	er Functions	
	AnalogIn (PinName pin) Create an AnalogIn , connected to the specified pin.	
float	read () Read the input voltage, represented as a float in the range [0.0,	1.0].
unsigned short	read_u16 () Read the input voltage, represented as an unsigned short in the 0xFFFF].	e range [0x0,
	operator float () An operator shorthand for read()	

Note: also fast analog in

🚳 mhed - Analogin Class Deference

https://developer.mbed.org/users/Sissors/code/FastAnalogIn/

Class similar to AnalogIn that uses burst mode to run continuous background conversions so when the input is read, the last value can immediately be returned.

Functional Block Diagram

PARAMETER MEASUREMENT INFORMATION

Figure 2. Operational Waveforms

team3_4901974_55754477_lscan.py ee192_sp14_camera_testdata_c.csv • •