Welcome to EE192!
Project

- Project: build an autonomous track-following racecar given a stock chassis and microcontroller dev kit
- Teams should be 3 students
 - Combined skillset should include mechanical design / fabrication, electronics, programming
 - Controls experience helpful
- Teams formed by checkoff Friday
- Read the competition rules
 - Freescale Cup
 - NATCAR
Checkoffs

- One-hour time slot on Friday 11:30am-12:30pm to demonstrate that your project is where it should be
- At least one team member needs to show up to run your hardware
- These are graded, half credit if late

- First checkoff this Friday
 - Form project teams and check out cars
 - Checks4Cars program: trade a $300 deposit check for a car
 - Get private course GitHub repository
 - Details on website
Git Refresher

- **Git**: distributed version control software
 - Each commit: like complete snapshot
 - Branches: separate chains of commits
 - eventually merged back to its parent
 - Distributed: everyone has complete copy
 - Most operations local, periodically sync

- **Best Practices**
 - Small, logical, often commits
 - Write good commit messages
 - Develop in branches: keep master clean

Learn git here: try.github.io
FRDM-KL25Z Development Board
MKL25Z128VLK4 microcontroller
 • 48MHz ARM Cortex-M0+
 • 128KB flash
 • 16KB SRAM
Programmable using USB
I/O headers including
 • GPIO
 • 16-bit analog inputs (ADC)
 • 12-bit analog output (DAC)
 • PWM, I²C, SPI, and UART modules
On-board RGB LED and accelerometer
IO Refresher

- **GPIO (general purpose input/output) pins**
 - As an output: sets voltage on pin from software, either GND (0) or Vdd (1)
 - As an input: samples voltage on the pin, returning either 0 (low) or 1 (high)

- **PWM (pulse-width modulation) module**
 - Every *period*, the pin is high based on the *duty cycle*, then low for the remainder
 - Can digitally approximate analog outputs

- **Analog Inputs (ADC)**
 - Converts a continuous analog voltage (0-3.3v) to a 16-bit (0-65535) quantity
Concurrency Refresher

- FRDM-KL25Z’s processor is single core
- Blocking Operations
 - Operations do not return until finished, blocking thread of control
 - IO operations may be lengthy!
- Nonblocking Operations
 - Operations return immediately, activity continues in the “background”
 - IO operations can buffer data and use interrupts to send/receive data
- Threading and RTOS
 - mBed has a RTOS with threading, concurrency, and synchronization
 - Beware of threading anti-patterns
```
MODSERIAL serial(USBTX, USBRX);

DigitalOut led_green(LED_GREEN);
DigitalOut led_red(LED_RED);
PwmOut led_blue(LED_BLUE);

int main() {
    // Internal LED is active low.
    led_green = 0;
    wait(0.25);
    led_green = 1;
    wait(0.25);

    // Mandatory "Hello, world!".
    serial.printf("Hello, world!\r\n");

    // Run led_fade_thread() in own thread
    Thread ledFadeThread(led_fade_thread);

    // Periodically call led_blink_periodic()
    RtosTimer ledBlinkTimer(led_blink_periodic);
    ledBlinkTimer.start(1000);

    // Work is done in the threads,
    // so main() can sleep.
    Thread::wait(osWaitForever);
}

void led_fade_thread(
    void const *args) {
    // Note this doesn’t terminate.
    while (1) {
        // Invert duty cycle.
        led_blue.write(1-0);
        Thread::wait(250);
        led_blue.write(1-0.25);
        Thread::wait(250);
        led_blue.write(1-0.5);
        Thread::wait(250);
        led_blue.write(1-0.75);
        Thread::wait(250);
    }
}

void led_blink_periodic(
    void const *args) {
    // Toggle the red LED when called.
    led_red = !led_red;
}
```
Hello, World! Demo

Live Demo!

D:FRDM-KL25Z:SDAINFO.HTM
This is essentially the procedure demonstrated in the checkpoint 1 page

... and hopefully goes Murphy-free ...

Note: you’ll have to download the Device Family Pack for the FRDM-KL25Z
http://www.keil.com/dd2/arm/armcm0/
(also on the checkpoint page)
Overview

- Soldering: joining (electrically and mechanically) metals using a separate filler metal “solder”
 - Electronics: bonding component pins/leads to circuit board through-holes or pads
 - Solder is usually a tin/lead alloy (e.g. 63/37) or lead-free tin-silver-copper alloy (e.g. SAC305)
 - This tutorial focuses on introductory through-hole soldering
 - Note: most production boards today are surface-mount to save space

Example solder joints:
- Through-hole
- Surface-mount
Safety Precautions

- Soldering melts metal - IT’S HOT
 - Tips typically set at $\leq 600^\circ F$ ($300^\circ C$) to avoid tip oxidation.
 - Irons can stay hot after turning off
 - Touching a hot tip is NOT fun
- Leaded solder contains, well, lead...
 - ... which is known to the state of California to cause cancer and reproductive harm ...
 - WASH YOUR HANDS AFTERWARDS
- Solder vaporizes flux, producing fumes
 - Regular exposure linked to asthma
 - DON’T BREATHE THEM IN
 - May also cause solder splatter: safety goggles recommended

Lead poisoning: not as fun in real life

© Fox
Soldering depends on good thermal transfer from tip to solder / component / board

- Metals oxidize, forming an oxide layer
 - Oxides impede thermal transfer
 - Reactions faster at higher temperatures

- Flux provides chemical cleaning
 - Rosin flux is corrosive when heated
 - ... and is present in solder wire spools
 - ... but is “burned” upon use

- Just keep this in mind...
Equipment Overview

Soldering Iron Base
(front view)
Temperature Adjust Knob

Soldering Iron Handpiece

Wire to Base
Grip
(hold iron here)
Barrel
contains heater
Tip
(melts solder)

Tip (cutaway view)
Solder (tinned coating)
Iron Plate
Copper Filling

Caution: These parts get very hot during operation! Do NOT touch until cool!
Tip Maintenance

- The tip is what heats things up
 - Want to maximize thermal transfer!

- Keep the tip “tinned” with solder
 - Provides better thermal transfer
 - Sacrificial layer preventing tip oxidation, which destroys the tip

- Must be occasionally refreshed
 - The solder oxidizes, accelerated by heat
 - Cleaning: wipe on brass or wet sponge
 - Immediately re-tin (apply solder layer)
Procedure

- Beginner’s tip: use iron to heat up component and board, not solder
 - Feed solder in through the other side
 - Solder only melts when component and board sufficiently hot
- Maximizing heat transfer
 - Point tips: solder using “side” of tip, not point
 - Chisel tips: use the broad flat end
Joint Inspection

Optimal joint shape is a “solder volcano”

Common Joints
- Good: Concave shape, adheres to board and component
- Bad: Not enough solder
- Bad: Too much solder (convex shape)

Cold Joints, may not make a reliable electrical connection
- Awful: Solder did not adhere to board
- Awful: Solder did not adhere to component, may not be obvious at a glance
Live Demo!

... which REALLY hopefully goes Murphy-free ...
Quick poll: best time for GSI office hours? (about 2 per week)
 ▶ Thursday, for the pre-checkoff scramble?
 ▶ Other times?

Thursday section only: has schedules cleared up enough to move discussion to Wednesday?
 ▶ Otherwise, future discussion sections (starting Thu, 29 Jan) will be 9:30am-10:30am
Electrostatic Discharge

- You build up static charge on your body
 - ... just by walking, especially when it’s dry
 - ... and up to several kV
 - but under $\sim 2\text{kV}$ is imperceptible
- Chips are sensitive to high voltages: **may cause permanent damage**
 - read: board stops working “for no reason”
- Remember to ground (discharge) yourself before handling sensitive electronics
 - Touch the grounded lab bench surface
 - Use a ESD wriststrap
 - Avoid touching traces on boards
Get your parts and get started!

I'll be walking around helping!

For checkpoint 1, you need to solder a resistor and LED onto perfboard
Choose the resistor such that $\sim 1.6\text{mA}$ goes through the LED
The MCU supply voltage is 3.3v

(yes, I know those red LEDs suck)

Also, grab a computer account form!