
EECS 192: Mechatronics Design Lab
Discussion 11: Embedded Software

written by: Richard ”Ducky” Lin Spring 2015

8 & 9 April 2015 (Week 11)

1 Multitasking Models

2 Software Engineering

3 Convenience vs. Performance

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 1 / 26



Multitasking Models

Multitasking Models

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 2 / 26



Multitasking Models

Motivation

Good cars need simultaneous velocity and
steering control

I Velocity control needs to time encoder
transitions and set motor PWM

I Steering control needs to wait for camera
integration, detect line, and update servo

I Also want to stream telemetry data

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 3 / 26



Multitasking Models A Concurrency Refresher

Cooperative Multitasking: Example

A simple way to achieve multitasking with an event loop:

void main() {

while (1) {

if (Camera.is_integration_finished ()) {

Servo.set_steering(Camera.detect_line ());

Camera.restart_integration ();

}

if (Encoder.is_transition ()) {

SpeedSensor.update(Encoder.get_last_width ());

Motor.set_pwm(TARGET_SPEED - SpeedSensor.get());

}

Telemetry.do_io();

}

}

What are some issues? Especially related to timing and correctness?

I If camera line detection is too long, may miss encoder transitions
I Even non-critical telemetry can block critical control operations

I Complex, interleaved control structures hinder readability

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 4 / 26



Multitasking Models A Concurrency Refresher

Cooperative Multitasking: Example

A simple way to achieve multitasking with an event loop:

void main() {

while (1) {

if (Camera.is_integration_finished ()) {

Servo.set_steering(Camera.detect_line ());

Camera.restart_integration ();

}

if (Encoder.is_transition ()) {

SpeedSensor.update(Encoder.get_last_width ());

Motor.set_pwm(TARGET_SPEED - SpeedSensor.get());

}

Telemetry.do_io();

}

}

What are some issues? Especially related to timing and correctness?
I If camera line detection is too long, may miss encoder transitions

I Even non-critical telemetry can block critical control operations

I Complex, interleaved control structures hinder readability

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 4 / 26



Multitasking Models A Concurrency Refresher

Interrupts

So I need some way to ensure critical events
aren’t missed: Interrupts!

I Hardware functionality which interrupts the
CPU on some event (like input transition)

I Saves current position in code, then jumps
to the ISR (interrupt service routine)

I Once ISR returns, restore previous position
in code and continue executing

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 5 / 26



Multitasking Models A Concurrency Refresher

Interrupts: Example

Let’s handle encoders with an interrupt!

void encoder_isr () {

speed = calculate_speed(EncoderTimer.read_us ());

EncoderTimer.reset ();

}

void main() {

EncoderInterrupt.fall(encoder_isr);

while (1) {

wait(CAMERA_INTEGRATION_TIME);

Servo.set_steering(Camera.detect_line ());

Motor.set_pwm(TARGET_SPEED - speed);

Telemetry.do_io();

}

}

What did we gain?

I Simpler control logic: camera is just integrate-wait-read

I All encoder transitions recorded, even if faster than camera reads

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 6 / 26



Multitasking Models A Concurrency Refresher

Interrupts: Example

Let’s handle encoders with an interrupt!

void encoder_isr () {

speed = calculate_speed(EncoderTimer.read_us ());

EncoderTimer.reset ();

}

void main() {

EncoderInterrupt.fall(encoder_isr);

while (1) {

wait(CAMERA_INTEGRATION_TIME);

Servo.set_steering(Camera.detect_line ());

Motor.set_pwm(TARGET_SPEED - speed);

Telemetry.do_io();

}

}

What did we gain?

I Simpler control logic: camera is just integrate-wait-read

I All encoder transitions recorded, even if faster than camera reads

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 6 / 26



Multitasking Models A Concurrency Refresher

Interrupts: Example

Let’s handle encoders with an interrupt!

void encoder_isr () {

speed = calculate_speed(EncoderTimer.read_us ());

EncoderTimer.reset ();

}

void main() {

EncoderInterrupt.fall(encoder_isr);

while (1) {

wait(CAMERA_INTEGRATION_TIME);

Servo.set_steering(Camera.detect_line ());

Motor.set_pwm(TARGET_SPEED - speed);

Telemetry.do_io();

}

}

What new issues did we cause?

I Motor controller frequency tied to camera
I encoder isr can fire anytime/anywhere, even interfering with main

I Really bad things can happen if encoder isr is slow
I Potential race conditions with shared variables (like speed)

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 6 / 26



Multitasking Models A Concurrency Refresher

Interrupts: Example

Let’s handle encoders with an interrupt!

void encoder_isr () {

speed = calculate_speed(EncoderTimer.read_us ());

EncoderTimer.reset ();

}

void main() {

EncoderInterrupt.fall(encoder_isr);

while (1) {

wait(CAMERA_INTEGRATION_TIME);

Servo.set_steering(Camera.detect_line ());

Motor.set_pwm(TARGET_SPEED - speed);

Telemetry.do_io();

}

}

What new issues did we cause?
I Motor controller frequency tied to camera
I encoder isr can fire anytime/anywhere, even interfering with main

I Really bad things can happen if encoder isr is slow
I Potential race conditions with shared variables (like speed)

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 6 / 26



Multitasking Models A Concurrency Refresher

Threading

What if I want to decouple the motor control
loop from the camera control loop?

Threads: sequences of instructions managed
independently by a scheduler

I Conceptually runs in parallel, but actually
time-multiplexed onto CPU

I Threads regularly pre-empted: paused so
another thread can run

I Called a context switch

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 7 / 26



Multitasking Models A Concurrency Refresher

Threading: Example

Rewriting the same code with threads:

void encoder_isr (); // same as previously

void camera_loop () { // in a while (1) {...} in own thread

wait(CAMERA_INTEGRATION_TIME);

Servo.set_steering(Camera.detect_line ());

}

void motor_loop () { // in a while (1) {...} in own thread

Motor.set_pwm(TARGET_SPEED - SpeedSensor.get());

wait(MOTOR_UPDATE_TIME);

}

void telemetry_loop () { // in a while (1) {...} in own thread

Telemetry.do_io();

}

What got better?

I Code is much cleaner: steering and motor control independent

I Motor update rate independent of camera integration time

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 8 / 26



Multitasking Models A Concurrency Refresher

Threading: Example

Rewriting the same code with threads:

void encoder_isr (); // same as previously

void camera_loop () { // in a while (1) {...} in own thread

wait(CAMERA_INTEGRATION_TIME);

Servo.set_steering(Camera.detect_line ());

}

void motor_loop () { // in a while (1) {...} in own thread

Motor.set_pwm(TARGET_SPEED - SpeedSensor.get());

wait(MOTOR_UPDATE_TIME);

}

void telemetry_loop () { // in a while (1) {...} in own thread

Telemetry.do_io();

}

What got better?

I Code is much cleaner: steering and motor control independent

I Motor update rate independent of camera integration time

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 8 / 26



Multitasking Models A Concurrency Refresher

Threading: Example

Rewriting the same code with threads:

void encoder_isr (); // same as previously

void camera_loop () { // in a while (1) {...} in own thread

wait(CAMERA_INTEGRATION_TIME);

Servo.set_steering(Camera.detect_line ());

}

void motor_loop () { // in a while (1) {...} in own thread

Motor.set_pwm(TARGET_SPEED - SpeedSensor.get());

wait(MOTOR_UPDATE_TIME);

}

void telemetry_loop () { // in a while (1) {...} in own thread

Telemetry.do_io();

}

What issues arise?

I Threads can be pre-empted anywhere, even during camera read
I Thread timing granularity can cause integration time inaccuracy
I Scheduling overhead: context switches take time
I Data sharing could be more complicated, requiring synchronization

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 8 / 26



Multitasking Models A Concurrency Refresher

Threading: Example

Rewriting the same code with threads:

void encoder_isr (); // same as previously

void camera_loop () { // in a while (1) {...} in own thread

wait(CAMERA_INTEGRATION_TIME);

Servo.set_steering(Camera.detect_line ());

}

void motor_loop () { // in a while (1) {...} in own thread

Motor.set_pwm(TARGET_SPEED - SpeedSensor.get());

wait(MOTOR_UPDATE_TIME);

}

void telemetry_loop () { // in a while (1) {...} in own thread

Telemetry.do_io();

}

What issues arise?

I Threads can be pre-empted anywhere, even during camera read
I Thread timing granularity can cause integration time inaccuracy
I Scheduling overhead: context switches take time
I Data sharing could be more complicated, requiring synchronization

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 8 / 26



Multitasking Models mbed RTOS

Benchmarking

But just how bad are those issues?
More importantly, how can we tell?

Benchmark time, of course!

I Want to determine context switch
overhead and schedule frequency

I Strategy
I Instantiate some threads
I Each rapidly toggles IO, indicating running
I View each thread’s IO on scope

Results:

I Scheduler invocation every 5ms

I Context switch overhead is about 10us

So, this could really mess with integration time.

measure frequency: 5 ms/div

measure overhead: 10 us/div

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 9 / 26



Multitasking Models mbed RTOS

Benchmarking

But just how bad are those issues?
More importantly, how can we tell?

Benchmark time, of course!

I Want to determine context switch
overhead and schedule frequency

I Strategy
I Instantiate some threads
I Each rapidly toggles IO, indicating running
I View each thread’s IO on scope

Results:

I Scheduler invocation every 5ms

I Context switch overhead is about 10us

So, this could really mess with integration time.

measure frequency: 5 ms/div

measure overhead: 10 us/div

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 9 / 26



Multitasking Models mbed RTOS

Benchmarking

But just how bad are those issues?
More importantly, how can we tell?

Benchmark time, of course!

I Want to determine context switch
overhead and schedule frequency

I Strategy
I Instantiate some threads
I Each rapidly toggles IO, indicating running
I View each thread’s IO on scope

Results:

I Scheduler invocation every 5ms

I Context switch overhead is about 10us

So, this could really mess with integration time.

measure frequency: 5 ms/div

measure overhead: 10 us/div

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 9 / 26



Multitasking Models mbed RTOS

Better Camera Timing

A simple solution to meet realtime constraints is to change priorities:

void camera_thread_fn () {

while (1) {

wait(CAMERA_INTEGRATION_TIME);

Servo.set_steering(Camera.detect_line ());

}

}

void main() {

...

Thread camera_thread(camera_thread_fn);

camera_thread.set_priority(osPriorityHigh);

...

}

Why won’t this work?

I wait is a dumb spin loop, won’t yield control to lower priority threads
I Since camera thread fn never sleeps, other threads “starve”
I Instead, use Thread::wait to yield to other threads

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 10 / 26



Multitasking Models mbed RTOS

Better Camera Timing

A simple solution to meet realtime constraints is to change priorities:

void camera_thread_fn () {

while (1) {

wait(CAMERA_INTEGRATION_TIME);

Servo.set_steering(Camera.detect_line ());

}

}

void main() {

...

Thread camera_thread(camera_thread_fn);

camera_thread.set_priority(osPriorityHigh);

...

}

Why won’t this work?
I wait is a dumb spin loop, won’t yield control to lower priority threads

I Since camera thread fn never sleeps, other threads “starve”
I Instead, use Thread::wait to yield to other threads

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 10 / 26



Multitasking Models mbed RTOS

Misc mbed RTOS topics

I Tickers regularly calls functions using ISRs
I Standard ISR caveats apply

I RtosTimer can also regularly call functions
I All timers are handled in a single thread,

osTimerThread

I The default max number of threads is 6
I OS TASKCNT and other constants in

mbed-rtos/rtx/RTX Conf CM.c

See the mbed RTOS documentation:
https://developer.mbed.org/handbook/RTOS

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 11 / 26

https://developer.mbed.org/handbook/Ticker
https://developer.mbed.org/handbook/RTOS
https://developer.mbed.org/handbook/RTOS


Software Engineering

Software Engineering

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 12 / 26



Software Engineering Abstraction

Oh Dear...

Can you easily tell what this code does?

// in main() loop

si = 1; si = 0;

uint16_t data [128];

for (int i=0; i<128; i++) {

clk = 0; clk = 1;

data[i] = ain.read_u16 ();

}

uint16_t max = 0; uint8_t pos = 0;

for (int i=0; i<128; i++) {

if (data[i] > max) {

max = data[i]; pos = i;

}

}

servo.write (0.075 + 0.025 * (64.0 - pos) / 64);

Probably not.

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 13 / 26



Software Engineering Abstraction

Oh Dear...

Can you easily tell what this code does?

// in main() loop

si = 1; si = 0;

uint16_t data [128];

for (int i=0; i<128; i++) {

clk = 0; clk = 1;

data[i] = ain.read_u16 ();

}

uint16_t max = 0; uint8_t pos = 0;

for (int i=0; i<128; i++) {

if (data[i] > max) {

max = data[i]; pos = i;

}

}

servo.write (0.075 + 0.025 * (64.0 - pos) / 64);

Probably not.

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 13 / 26



Software Engineering Abstraction

Oh Dear...

Is this better? Why?

const uint8_t CAMERA_LENGTH = 128, CAMERA_HALF = CAMERA_LENGTH / 2;

void camera_read(uint16_t* data_out) {

si = 0; si = 0;

for (int i=0; i<CAMERA_LENGTH; i++) {

clk = 0; clk = 1;

data_out[i] = ain.read_u16 ();

}

}

uint8_t line_detect(uint16_t* cam_data) {

uint16_t max = 0; uint8_t pos = 0;

for (int i=0; i<CAMERA_LENGTH; i++) {

if (cam_data[i] > max) {

max = cam_data[i]; pos = i;

}

}

return pos;

}

void set_steering_pct(float pct) {

servo.write (0.075 + 0.025 * (pct));

}

// in main() loop

uint16_t cam_data[CAMERA_LENGTH ];

camera_read(cam_data);

int8_t line_offset = CAMERA_HALF - line_detect(cam_data);

set_steering_pct ((float)line_offset/CAMERA_HALF);

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 14 / 26



Software Engineering Abstraction

Good Programming Style

Good style produces readable and maintainable
code, saving you time later

I Short functions, single responsibility
I Make it easy to understand

I Consistent level of abstraction
I Separate the “what” from the “how”

I Don’t repeat yourself (DRY)
I Copypaste code is bad: making consistent

changes becomes very hard

Want to know more? Take cs169!

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 15 / 26



Software Engineering State Machines

The Old Fashioned Way

Here’s a really basic lost line algorithm:

uint16_t last_line_pos = 0;

motor.set_pwm (0.7);

while (1) {

int16_t line_pos = line_detect(camera_data);

if (line_pos != -1) { // line detected - follow it

set_steering_pct(pid_update(line_pos));

} else { // line not found - rail servo in previous direction

if (last_line_pos < 64) {

set_steering_pct (0.0);

} else {

set_steering_pct (1.0);

}

motor.set_pwm (0.4); // slow down

}

last_line_pos = line_pos;

}

Is it correct?

Nope

I last line pos immediately clobbered, but not obvious at-a-glance

I Implicit state in motor PWM - forget to reset motor to full speed

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 16 / 26



Software Engineering State Machines

The Old Fashioned Way

Here’s a really basic lost line algorithm:

uint16_t last_line_pos = 0;

motor.set_pwm (0.7);

while (1) {

int16_t line_pos = line_detect(camera_data);

if (line_pos != -1) { // line detected - follow it

set_steering_pct(pid_update(line_pos));

} else { // line not found - rail servo in previous direction

if (last_line_pos < 64) {

set_steering_pct (0.0);

} else {

set_steering_pct (1.0);

}

motor.set_pwm (0.4); // slow down

}

last_line_pos = line_pos;

}

Is it correct? Nope

I last line pos immediately clobbered, but not obvious at-a-glance

I Implicit state in motor PWM - forget to reset motor to full speed

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 16 / 26



Software Engineering State Machines

With State Machines

Let’s make things clearer by following the state machine model

Write the transition function
enum State { FOUND , LOST_LEFT , LOST_RIGHT };

State do_transition(State current_state , int16_t line_pos

, int16_t last) {

if (current_state == FOUND) {

if (line_pos == -1) {

if (last <= 64) {

return LOST_LEFT;

} else {

return LOST_RIGHT;

}

}

} else {

if (line_pos != -1) {

return FOUND;

}

}

}

lost track state machine
graphical notation

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 17 / 26



Software Engineering State Machines

With State Machines

Let’s make things clearer by following the state machine model

Write the state actions
enum State { FOUND , LOST_LEFT , LOST_RIGHT };

void state_action(State state , int16_t line_pos , int16_t&

last) {

if (state == FOUND) {

set_steering_pct(pid_update(line_pos));

set_motor_pwm (0.7);

last = line_pos;

} else if (state == LOST_LEFT) {

set_steering_pct (0.0);

set_motor_pwm (0.4);

} else if (state == LOST_RIGHT) {

set_steering_pct (1.0);

set_motor_pwm (0.4);

}

}

lost track state machine
graphical notation

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 18 / 26



Software Engineering State Machines

With State Machines

Let’s make things clearer by following the state machine model

... and put it all together

int16_t last = 0;

State state = FOUND;

while (1) {

int16_t line_pos = line_detect(camera_data);

state = do_transition(state , line_pos , last);

state_action(state , line_pos , last);

}

lost track state machine
graphical notation

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 19 / 26



Convenience vs. Performance

Convenience vs. Performance

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 20 / 26



Convenience vs. Performance Digital Output

DigitalOutput

Given this simple block of code, guess the waveform frequency...

DigitalOut wave(PTB2);

while (1) {

wave = !wave;

}

About 0.5MHz!
(or 1 edge per us)
That’s at least an order of
magnitude slower than the
instruction clock!

Where might the bottleneck be?

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 21 / 26



Convenience vs. Performance Digital Output

DigitalOutput

Given this simple block of code, guess the waveform frequency...

DigitalOut wave(PTB2);

while (1) {

wave = !wave;

}

About 0.5MHz!
(or 1 edge per us)
That’s at least an order of
magnitude slower than the
instruction clock!

Where might the bottleneck be?

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 21 / 26



Convenience vs. Performance Digital Output

Under the Hood: How DigitalOut Works

mbed/api/DigitalOut.h

class DigitalOut {

void write(int value) {

gpio_write (&gpio , value);

}

}

mbed/targets/hal/TARGET Freescale/TARGET KLXX/gpio object.h

typedef struct {

PinName pin;

uint32_t mask;

__IO uint32_t *reg_dir;

__IO uint32_t *reg_set;

__IO uint32_t *reg_clr;

__I uint32_t *reg_in;

} gpio_t;

static inline void gpio_write(gpio_t *obj , int value) {

if (value)

*obj ->reg_set = obj ->mask;

else

*obj ->reg_clr = obj ->mask;

}

Many levels of indirection for a simple register write!

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 22 / 26



Convenience vs. Performance Digital Output

Raw register access

What if we skip the mbed API and directly write the register?

DigitalOut wave(PTB2); // set pin as output

while (1) {

PTB ->PTOR = (0x01 << 2); // set toggle register to flip pin PTB2

}

Much faster: about 8MHz!
(or 16 edges per us)

Each GPIO port has these registers:
PDOR: set data
PSOR: set bits
PCOR: clear bits
PTOR: toggle bits
PDIR: input
PDDR: directionality

See MKL25Z4.h for details

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 23 / 26



Convenience vs. Performance Interrupts

InterruptIn Latency

Similarly, let’s measure the InterruptIn latency
I ch1 (yellow) spike is ISR body

I ch2 (blue) toggling is main loop

I ch3 (pink) is interrupt signal

I Interrupts enabled using InterruptIn.fall(...)

About 7us from edge to
interrupt

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 24 / 26



Convenience vs. Performance Interrupts

InterruptIn Latency

What about a lower level implementation?

extern "C" void PORTA_IRQHandler () {

PTB ->PTOR = 0x04; PTB ->PTOR = 0x04; // toggle ch1 (yellow)

PORTA ->ISFR = PORT_ISFR_ISF_MASK; // clear interrupt flags

}

NVIC_SetVector(PORTA_IRQn , (uint32_t)PORTA_IRQHandler); // set interrupt handler function

PORTA ->PCR [16] = (PORTA ->PCR [16] | PORT_PCR_IRQC_MASK); // enable on PTC16 / ch3 (pink)

NVIC_EnableIRQ(PORTA_IRQn);

Much faster: about 0.5us
from edge to interrupt

But does this really matter?
I Order of magnitude faster

I ... but it’s still microseconds

I Unlikely to be a bottleneck

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 25 / 26



Convenience vs. Performance Interrupts

Summary

I Interrupts and threading can make multitasking easier
I Also come with their set of pitfalls and issues

I Write good code so you don’t hate yourself later
I If you have high performance requirements, go below the mbed API

I But in absolute timing terms, unlikely to make a significant difference

I Questions? Feedback?

Ducky (UCB EECS) Mechatronics Design Lab 8 & 9 April 2015 (Week 11) 26 / 26


