
EECS 192: Mechatronics Design Lab
Discussion 9 (Part 2): Embedded Software

written by: Richard ”Ducky” Lin Spring 2015

18 & 19 Feb 2015 (Week 9)

1 Embedded Programming

2 Software Engineering

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 1 / 13



Embedded Programming

Embedded Programming

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 2 / 13



Embedded Programming Limitations

Hardware Specs

Recall the hardware specs for your boards:

I MKL25Z128VLK4 microcontroller
I 48MHz ARM Cortex-M0+
I 128KB flash
I 16KB SRAM

What might make embedded programming
different from desktop programming?

FRDM-KL25Z Board
image from KL25Z User’s Manual

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 3 / 13



Embedded Programming Limitations

Memory Use

Say, I want to allocate some storage when I read my camera array.

uint16_t* read_camera () {

uint16_t* camera_data = malloc (2* CAMERA_PIXELS);

for (int i=0; i<CAMERA_PIXELS; i++) {

camera_data[i] = camera_read_pixel ();

}

return camera_data;

}

Why might this be a bad idea on a microcontroller?

I Not checking for malloc failures - can return NULL
I (this isn’t an embedded-specific issue!)

I Dynamic (heap) memory allocation (malloc/free) is expensive

I Can cause heap fragmentation, especially when memory is scarce

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 4 / 13



Embedded Programming Limitations

Memory Use

Say, I want to allocate some storage when I read my camera array.

uint16_t* read_camera () {

uint16_t* camera_data = malloc (2* CAMERA_PIXELS);

for (int i=0; i<CAMERA_PIXELS; i++) {

camera_data[i] = camera_read_pixel ();

}

return camera_data;

}

Why might this be a bad idea on a microcontroller?
I Not checking for malloc failures - can return NULL

I (this isn’t an embedded-specific issue!)

I Dynamic (heap) memory allocation (malloc/free) is expensive

I Can cause heap fragmentation, especially when memory is scarce

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 4 / 13



Embedded Programming Limitations

Memory Use

Ok, so malloc is bad. I’m more an object-oriented C++ guy anyways!

CameraArray* read_camera () {

CameraArray* camera_data = new CameraArray ();

camera_data ->read_from(near_cam);

return camera_data;

}

class CameraArray {

public:

void read_from(Camera& camera);

int8_t get_line_error ();

protected:

uint16_t camera_data[CAMERA_PIXELS ];

}

Why is this also bad?

I new also does dynamic memory allocation
I So exactly the same issues as malloc, but perhaps a bit more sneaky

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 5 / 13



Embedded Programming Limitations

Memory Use

Ok, so malloc is bad. I’m more an object-oriented C++ guy anyways!

CameraArray* read_camera () {

CameraArray* camera_data = new CameraArray ();

camera_data ->read_from(near_cam);

return camera_data;

}

class CameraArray {

public:

void read_from(Camera& camera);

int8_t get_line_error ();

protected:

uint16_t camera_data[CAMERA_PIXELS ];

}

Why is this also bad?
I new also does dynamic memory allocation

I So exactly the same issues as malloc, but perhaps a bit more sneaky

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 5 / 13



Embedded Programming Limitations

Pass-By-Value

Ok enough with dynamic memory allocation. No new either.

CameraArray read_camera(CameraArray camera_data) {

camera_data.read_from(near_cam);

return camera_data;

}

class CameraArray {

public:

void read_from(Camera& camera);

int8_t get_line_error ();

protected:

uint16_t camera_data[CAMERA_PIXELS ];

}

What performance issues might arise from this?

I C++ arguments are passed by value - it may create a copy
I Copying large data structures is inefficient and can cause subtle bugs

I Pass pointers to objects or use references instead

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 6 / 13



Embedded Programming Limitations

Pass-By-Value

Ok enough with dynamic memory allocation. No new either.

CameraArray read_camera(CameraArray camera_data) {

camera_data.read_from(near_cam);

return camera_data;

}

class CameraArray {

public:

void read_from(Camera& camera);

int8_t get_line_error ();

protected:

uint16_t camera_data[CAMERA_PIXELS ];

}

What performance issues might arise from this?
I C++ arguments are passed by value - it may create a copy

I Copying large data structures is inefficient and can cause subtle bugs

I Pass pointers to objects or use references instead

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 6 / 13



Embedded Programming Limitations

Memory Use

Ok, let’s say I write a recursive image processing algorithm.
Bear with me on this crappy example; I’m not a CV guy

uint8_t difference_gaussians(uint8_t level , uint16_t [] line_data) {

uint16_t line_filtered[CAMERA_PIXELS ];

gaussian_blur(line_filtered /*dst*/, line_data /*src*/);

if (level != 0) {

uint8_t next_result = difference_gaussians(level -1,

line_filtered);

}

return /*CV magic on filtered and original line data*/;

}

So what can go wrong here?

I Potential stack overflow if recursion runs deep enough
I Each recursive call allocates a 2*CAMERA PIXELS array on stack
I Possibly undetected (no operating system or memory protection)!

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 7 / 13



Embedded Programming Limitations

Memory Use

Ok, let’s say I write a recursive image processing algorithm.
Bear with me on this crappy example; I’m not a CV guy

uint8_t difference_gaussians(uint8_t level , uint16_t [] line_data) {

uint16_t line_filtered[CAMERA_PIXELS ];

gaussian_blur(line_filtered /*dst*/, line_data /*src*/);

if (level != 0) {

uint8_t next_result = difference_gaussians(level -1,

line_filtered);

}

return /*CV magic on filtered and original line data*/;

}

So what can go wrong here?
I Potential stack overflow if recursion runs deep enough

I Each recursive call allocates a 2*CAMERA PIXELS array on stack
I Possibly undetected (no operating system or memory protection)!

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 7 / 13



Embedded Programming Limitations

Synchronization

Ok, let’s talk threads!

uint16_t camera_data[CAMERA_PIXELS ];

void camera_read_thread () {

for (int i=0; i<CAMERA_PIXELS; i++) {

camera_data[i] = camera_read_pixel ();

}

Thread.wait(INTEGRATION_TIME);

}

void camera_process_thread () {

uint8_t line_camera_distance = /* magic filter */;

servo_pwm.write(kp * line_camera_distance);

}

What might happen?

I No synchronization! Can read data in the middle of a write!
I Might get half of one frame and half of another...

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 8 / 13



Embedded Programming Limitations

Synchronization

Ok, let’s talk threads!

uint16_t camera_data[CAMERA_PIXELS ];

void camera_read_thread () {

for (int i=0; i<CAMERA_PIXELS; i++) {

camera_data[i] = camera_read_pixel ();

}

Thread.wait(INTEGRATION_TIME);

}

void camera_process_thread () {

uint8_t line_camera_distance = /* magic filter */;

servo_pwm.write(kp * line_camera_distance);

}

What might happen?
I No synchronization! Can read data in the middle of a write!

I Might get half of one frame and half of another...

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 8 / 13



Embedded Programming Limitations

Synchronization

Ok, let’s talk threads!

uint16_t camera_data[CAMERA_PIXELS ];

void camera_read_thread () {

for (int i=0; i<CAMERA_PIXELS; i++) {

camera_data[i] = camera_read_pixel ();

}

Thread.wait(INTEGRATION_TIME);

}

void camera_process_thread () {

uint8_t line_camera_distance = /* magic filter */;

servo_pwm.write(kp * line_camera_distance);

}

How do I prevent it?

I Various synchronization constructs: mutexes/locks, semaphores, ...
I Nonblocking solutions: double/triple buffering

I Or asynchronous FIFOs (efficiently implemented as a circular buffer)

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 8 / 13



Embedded Programming Limitations

Synchronization

Ok, let’s talk threads!

uint16_t camera_data[CAMERA_PIXELS ];

void camera_read_thread () {

for (int i=0; i<CAMERA_PIXELS; i++) {

camera_data[i] = camera_read_pixel ();

}

Thread.wait(INTEGRATION_TIME);

}

void camera_process_thread () {

uint8_t line_camera_distance = /* magic filter */;

servo_pwm.write(kp * line_camera_distance);

}

How do I prevent it?

I Various synchronization constructs: mutexes/locks, semaphores, ...
I Nonblocking solutions: double/triple buffering

I Or asynchronous FIFOs (efficiently implemented as a circular buffer)

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 8 / 13



Software Engineering

Software Engineering

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 9 / 13



Software Engineering Expectations

Two Cameras

I have some code to read a single camera.

Camera near_cam(PTB2 /*CLK*/, PTB3 /*SI*/, PTC2 /*AO*/);

void control_loop () {

servo_pwm.write(kp * near_cam.get_line_distance ());

}

Given the structure, how would I add another camera?

I Simple, right? Instantiate another Camera?
I Camera far cam(PTB4, PTB5, PTC1);

What hidden assumptions / expectations did I have for Camera?

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 10 / 13



Software Engineering Expectations

Two Cameras

I have some code to read a single camera.

Camera near_cam(PTB2 /*CLK*/, PTB3 /*SI*/, PTC2 /*AO*/);

void control_loop () {

servo_pwm.write(kp * near_cam.get_line_distance ());

}

Given the structure, how would I add another camera?

I Simple, right? Instantiate another Camera?
I Camera far cam(PTB4, PTB5, PTC1);

What hidden assumptions / expectations did I have for Camera?

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 10 / 13



Software Engineering Expectations

Two Cameras

I have some code to read a single camera.

Camera near_cam(PTB2 /*CLK*/, PTB3 /*SI*/, PTC2 /*AO*/);

void control_loop () {

servo_pwm.write(kp * near_cam.get_line_distance ());

}

Given the structure, how would I add another camera?

I Simple, right? Instantiate another Camera?
I Camera far cam(PTB4, PTB5, PTC1);

What hidden assumptions / expectations did I have for Camera?

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 10 / 13



Software Engineering Expectations

Expectations

What if the Camera implementation looked like this?

uint16_t camera_data[CAMERA_PIXELS ]; // global

class Camera {

public:

Camera(PinName clk , PinName si, PinName adc);

void read() {

/*ADC reads into global camera_data */

}

int8_t get_line_distance () {

return /*some computation on global camera_data */;

}

}

OH SH-
I Breaks user expectations of object encapsulation and independence

I DON’T DO IT!

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 11 / 13



Software Engineering Expectations

Expectations

What if the Camera implementation looked like this?

uint16_t camera_data[CAMERA_PIXELS ]; // global

class Camera {

public:

Camera(PinName clk , PinName si, PinName adc);

void read() {

/*ADC reads into global camera_data */

}

int8_t get_line_distance () {

return /*some computation on global camera_data */;

}

}

OH SH-
I Breaks user expectations of object encapsulation and independence

I DON’T DO IT!

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 11 / 13



Software Engineering Expectations

Globals

While we’re talking about globals, what anti-patterns can arise from this?

float motor_velocity_target; // global

void main() {

motor_velocity_target = 3.0;

// rest of code here

}

So far, so good, right?

Perhaps I also have a kill switch in another function:
if (kill switch) motor velocity target = 0;

And why not have it dependent on tracking, perhaps in a different .c file:
if (bad tracking) motor velocity target -= 0.1;

Soon, you have no clue what the target actually is - dataflow spaghetti!

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 12 / 13



Software Engineering Expectations

Globals

While we’re talking about globals, what anti-patterns can arise from this?

float motor_velocity_target; // global

void main() {

motor_velocity_target = 3.0;

// rest of code here

}

So far, so good, right?

Perhaps I also have a kill switch in another function:
if (kill switch) motor velocity target = 0;

And why not have it dependent on tracking, perhaps in a different .c file:
if (bad tracking) motor velocity target -= 0.1;

Soon, you have no clue what the target actually is - dataflow spaghetti!

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 12 / 13



Software Engineering Expectations

Globals

While we’re talking about globals, what anti-patterns can arise from this?

float motor_velocity_target; // global

void main() {

motor_velocity_target = 3.0;

// rest of code here

}

So far, so good, right?

Perhaps I also have a kill switch in another function:
if (kill switch) motor velocity target = 0;

And why not have it dependent on tracking, perhaps in a different .c file:
if (bad tracking) motor velocity target -= 0.1;

Soon, you have no clue what the target actually is - dataflow spaghetti!

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 12 / 13



Software Engineering Expectations

Globals

While we’re talking about globals, what anti-patterns can arise from this?

float motor_velocity_target; // global

void main() {

motor_velocity_target = 3.0;

// rest of code here

}

So far, so good, right?

Perhaps I also have a kill switch in another function:
if (kill switch) motor velocity target = 0;

And why not have it dependent on tracking, perhaps in a different .c file:
if (bad tracking) motor velocity target -= 0.1;

Soon, you have no clue what the target actually is - dataflow spaghetti!

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 12 / 13



Software Engineering Expectations

Summary

I Avoid dynamic memory allocation

I Watch out for the limited RAM and stack overflow

I Watch out for synchronization errors

I Write code that conforms to user expectations

I Avoid dataflow spaghetti

Ducky (UCB EECS) Mechatronics Design Lab 18 & 19 Feb 2015 (Week 9) 13 / 13


