Fig. 1 Simplified motor model without inductance.

Given: \(R_m = 2\Omega \), \(k_r = 0.1 Nm^{-1} \), \(k_e = 0.01V - s/rad \)

As derived in class, the motor torque depends on motor current: \(\tau = k_r i_m \), where \(\tau \) has units of \(N - m \), and \(k_r \) is \(N - m/amp \).

The back emf voltage is proportional to motor velocity: \(V_e = k_e \dot{\theta}_m \), where \(\dot{\theta}_m \) is motor velocity in radians/second and thus \(k_e \) has units of \(Volt - sec/rad \).

For the physics behind the motor model, see:

Problems:

1. The unloaded motor is connected to a 6V battery. Neglecting friction and other losses, determine \(i_m, V_e, \) and \(\dot{\theta}_m \) in steady state.

2. The motor is connected to a 6V battery with negligible internal battery resistance. The motor shaft is clamped so that \(\theta_m = 0 \). Determine \(i_m, V_e, \) and \(\tau_m \).

3. The motor is connected through a gear box to a car tire. The motor is turning at 5000 rpm. What is the instantaneous open circuit voltage \(V_m \)?

4. The motor is turning at 5000 rpm, and \(V_m \) is now short circuited. What is the initial current \(i_m \), and torque \(\tau_m \) shortly after the short circuit is applied?

For the following, consider that the motor is connected through a gear box to a car tire. The motor is initially turning at 5000 rpm, and the car has inertia and friction.

5. Consider \(V_m \) is short circuited at \(t = 0 \). Sketch the trend of \(i_m, V_e, \dot{\theta}_m, \) and \(\tau_m \) until the car comes to a rest.

6. Consider now \(V_m \) connected to battery at -1ms and short circuited for 2 ms at \(t=0 \). Sketch variables as above for -1 ms \(< t < 2 \) ms.

7. Consider motor initially disconnected. Now \(V_m \) is connected to a 6V battery with negligible internal resistance at \(t = 0 \) ms. Sketch the trend of \(i_m, V_e, \dot{\theta}_m, \) and \(\tau_m \) until the car reaches a steady state velocity.

8. Consider now \(V_m \) is connected to the 6V battery for 1 ms at \(t=0 \), and then \(V_m \) is open circuited. Sketch variables as above for -1 ms \(< t < 2 \) ms.