EECS192 Lecture 5
Feb. 13, 2018

0. Q2
1. Check off-
 • Fri 2/16: Motor drive/stall, steering servo from battery,
 – schematics due (+ part location rats nest- no copper)
 • PCB design due (Gerbers) Tues 2/20 midnight
 • Fri 2/23: Final Gerbers 3:59 pm –
 • Bay Area Circuits Monday 2/26 4pm (optional)
 • Fri 3/16: car assembled open-loop drop and run
2. 2/20 Quiz 3: switch mode power supply and regulator
3. CalDay Sat. April 21 @ UCB

Topics
• Debugging handout
• Motor+ snubber/flyback diode
• Wiring (more)
• Battery cell balancing
• Power supplies
 – Linear regulator
 – Buck converter
Assume ideal diode, ideal switch, $L = 100 \ \mu H$. Time constant $\tau = 1 \ ms$. Steady state, constant velocity. Initial rate: $V/L = +8 \times 10^4 \ \text{amp/sec}$
Assume ideal diode, ideal switch, $L = 100 \, \mu H$. Time constant $\tau = 1 \, ms$. Steady state, constant velocity. Assume $i_{min} = 5 \, amp$.
Power supply wiring - Star is better!

Voltage regulator

On board: what does this look like electrically (as a schematic)?

Low power ground

+11V

On board: what does this look like electrically (as a schematic)?
Which is "Star" config?
Which is "Star" config?
Battery Cell Balancing

Cell balancing
Supply waveforms with motor PWM?

- Battery model
- Waveforms on board
- Wiring to reduce voltage resistance effects of wiring
Voltage Regulators

Linear Regulator $V_{IN} > V_{REG}$

Boost Converter $V_{IN} < V_{REG}$

Buck Converter $V_{IN} > V_{REG}$

Power Supplies
Linear Regulator, e.g. KA378R05

LDO = low drop out
Caution: not all linear regulators are low drop out
Typical Application

*Required if regulator is located far from power supply filter.

C_{OUT} must be at least 22 µF to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator and the ESR is critical; see curve.
Buck Converter

On-State

Off-State

https://en.wikipedia.org/wiki/Buck_converter

Power Supplies-buck regulator
Buck Converter
LM2678
DC-DC Gotchas

• Switch stuck on ➔ 11V LiPo burns out everything
• High peak currents ➔ big conductors, short leads
• 200 kHz radiation into sensor circuits or A/D
• Filter caps: low ESR, low inductance
• Feedback disconnect, noise on feedback line

Lin Reg Gotchas

• Inefficient: need heat sink
• Filter caps: low ESR, low inductance possible instability!
Approximate voltage regulator behavior

Linear Regulator
nominal output 5V,

Power dissipated in regulator
Approximate voltage regulator behavior

Boost Converter, nominal
Output 5V, $V_{IN} < V_{REG}$

Power dissipated in regulator
Approximate voltage regulator behavior

Buck Converter, nominal
Output 5V, $V_{IN} > V_{REG}$

Power dissipated in regulator
Extra Slides

(boost converter not used in 2018)
Boost Converter - LT1370

Caution: ESR!
Need special cap
Boost Converter

Waveforms on board
(also see boost converter notes)