EECS192 Lecture 9
Mar. 14, 2017

Notes:
1. Check off-
 1. 3/17 Closed loop figure 8 drop and run
 2. Setup courtyard track
2. Progress Report due Tues 4/5 in class
3. HW 2 due Fri April 1, 6 pm in bcourses
4. CalDay Sat. April 22 @ UCB

Topics
• Feedback control overview: P, PI control
• Bicycle steering model
• V-rep steering simulator
• Software notes for embedded control
• Quiz 4
Control overview

On board...
Proportional control:
\[U = kp \cdot e = kp \cdot (r - y); \]

Proportional + integral control
\[U = kp \cdot e + ki \cdot e_{\text{sum}}; \]
\[e_{\text{sum}} = e_{\text{sum}} + e; \]
Bicycle Steering Model
Bicycle Steering Control

Proportional control:
\[r = 0 \quad \text{(to be on straight track)} \]
\[\delta = u = kp^*e \]

Note steady state error: car follows larger radius
V-rep simulation demo
Software Notes

Read sensors \rightarrow process \rightarrow output Idle Read sensors \rightarrow process \rightarrow output

interrupt

User IO

Blocking IO

Printf

interrupt

Idle

Idle

Highest priority

Highest priority
Hall sensor
angle skewed 60 degrees
REV: weak rotation

<table>
<thead>
<tr>
<th>Hall Sensor</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A=HAC</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>B=HA</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>C=HAB</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>D=HB</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>E=HBC</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>F=HC</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>
Hall sensor
angle skewed 60 degrees
FWD = STUCK!