1 Bicycle Kinematics

The kinematic equations are given by:

\[\dot{x}_b = V \cos(\theta(t)) \]
\[\dot{y}_b = -V \sin(\theta(t)) \]
\[\dot{\theta} = \frac{V}{L} \tan(\delta(t)) \]
\[y_a = y_b - L \sin(\theta(t)) \]

For simplicity, we can assume that the vehicle speed \(V \) is constant. There is then just one control input the system, the steering angle \(\delta \), and we can consider the output to be \(y_a \), the road distance from the front axle. Now for following a straight track with a small heading error (say less than 20°), we can linearize the differential equations using \(\sin \theta \approx \theta \) and \(\cos \theta \approx 1 \). Thus we get:

\[\dot{y}_b \approx -V \theta \]
\[\dot{\theta} \approx \frac{V}{L} \delta(t) \]
\[\dot{y}_a \approx \dot{y}_b - L \dot{\theta} = -V \theta - L \dot{\theta} \]

We would like to get a differential equation relating the input steering angle to the front axle position error. To do this, we differentiate eqn. 7 and substitute eqn. 6 for steering angle obtaining

\[\ddot{y}_a = -\frac{V^2}{L} \delta(t) - V \dot{\delta}(t). \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_b)</td>
<td>X coordinate of midpoint of rear axle</td>
</tr>
<tr>
<td>(x_a)</td>
<td>X coordinate of midpoint of front axle</td>
</tr>
<tr>
<td>(y_b)</td>
<td>lateral displacement w.r.t. road centerline at rear axle</td>
</tr>
<tr>
<td>(y_a)</td>
<td>lateral displacement w.r.t. road centerline at front axle</td>
</tr>
<tr>
<td>(\delta)</td>
<td>steering angle</td>
</tr>
<tr>
<td>(L)</td>
<td>wheel base</td>
</tr>
<tr>
<td>(\theta)</td>
<td>relative yaw angle w.r.t. road centerline</td>
</tr>
<tr>
<td>(V)</td>
<td>vehicle speed</td>
</tr>
</tbody>
</table>

Table 1: Definition of Variables
2 Proportional Control

Let’s see what happens when we apply a steering control to the system proportional to position error:

$$\delta(t) = k_p y_a(t)$$ \hspace{1cm} (9)

Then the closed loop system has dynamics described by the second order linear differential equation:

$$\ddot{y}_a + V k_p \dot{y}_a(t) + \frac{V^2}{L} k_p y_a(t) = 0.$$ \hspace{1cm} (10)

Let’s re-write this second order differential equation in state variable form, letting $x_1 = y_a$ and $x_2 = \dot{y}_a$:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{V^2}{L} k_p & -V k_p \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$ \hspace{1cm} (11)

This is just a homogeneous equation of the form $\dot{x} = Ax$, so we know the solution is just:

$$x(t) = e^{At}x(0)$$ \hspace{1cm} (12)

where e^{At} is a matrix exponential given by

$$e^{At} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + ...$$ \hspace{1cm} (13)

The system will be stable if the real part of the eigenvalues of A are less than 0. You can verify that the eigenvalues of A are

$$\lambda_{1,2} = \frac{V}{2} \left(-k_p \pm \sqrt{k_p^2 - \frac{4k_p}{L}}\right)$$ \hspace{1cm} (14)