Lab Equipment

Project Proposals

Car Critiques
Lab Equipment
Benchtop Power Supply Intro

- Provides a regulated power source
- Limits to the more restrictive of the voltage setpoint or current setpoint
- Or, a more helpful way to think about it:
 - Acts as a constant voltage supply
 - Until it hit the current setpoint (or "current limit"), then it regulates the voltage not to exceed the current limit
 - Set current limit to a known “shouldn’t exceed” point to act as a fuse
- Caveat: source has internal capacitance and limiting has response time
 - May instantaneously exceed current limit

IV Curve

constant-voltage mode

current-limiting mode
Check your Understanding

So I've got a power supply set at $V_{set}=5\, \text{v}$, $I_{set}=500\, \text{mA}$ and some $\frac{1}{4}$-watt resistors...

What will be the voltage across, current through, and power supply operating regime when loaded with:

- 100 Ω resistor
- 1 Ω resistor
- 10 Ω resistor

why might this be a bad idea?
Check your Understanding

So I've got a power supply set at $V_{set}=5\,\text{v}$, $I_{set}=500\,\text{mA}$ and some $\frac{1}{4}$-watt resistors...

What will be the voltage across, current through, and power supply operating regime when loaded with:

- 100 Ω resistor
- 1 Ω resistor
- 10 Ω resistor

why might this be a bad idea?
Function Generator Intro

- Generates an arbitrary waveform with configurable parameters
- Useful for generating test inputs
 - ... like motor driver PWM inputs
 - ... and servo control signal
- “but wait, why not use my MCU?!”

Square Wave

Sine Wave
Function Generator Intro

- Generates an arbitrary waveform with configurable parameters
- Useful for generating test inputs
 - ... like motor driver PWM inputs
 - ... and servo control signal
- “but wait, why not use my MCU?!”
 - Debugging protip: test things in isolation!
 - Function generator output is known good
 - You are much less sure your software works the first time, every time

Square Wave

Sine Wave
50-ohm mode

- Function generators internally have a 50Ω impedance and expect a 50Ω load
- Double the voltage is generated internally
 - If you have a high impedance (Hi-Z) load, you see double the voltage
- You can either:
 - Manually halve the voltage
 - or -
 - Set the generator into Hi-Z mode
Oscilloscope Intro

- Displays graph of voltage over time
 - Well, no - - - -, Sherlock
Oscilloscope Intro

- Displays graph of voltage over time
 - Well, no - - - -, Sherlock
- Provides visibility into your system
- Verify signals are what you expect:
 - Is your motor turning on?
 - Is your speed sensor outputting counts?
- Provide insights into subsystems:
 - See how line camera output works
- If you ever get stuck...
 - Don’t debug by brute force
 - Turn on the scope and figure out the root of the problem
There is an auto-scale function
- but garbage-in, garbage-out...
- and Prof. Pister will die a little inside...

Know how to manually set the scope
- You should have an idea of what to expect you DO understand your circuit, right? RIGHT?!
- Set the per-channel vertical scale based on the expected voltage range
- Set the global horizontal scale based on expected timescale

Capture modes
- Trigger: aligns start time to a signal edge
- Auto: continuous sampling

Triggering mode
- trigger level setpoint in red
- triggered rising edge in green
Probe Compensation

- Scope has an internal input resistance and capacitance
- A 10:1 probe presents a higher input resistance by attenuation
 - Most scopes can compensate for this
 - Internally, a 9MΩ resistor forming a resistive divider with scope input
- But need capacitive divider for AC signals
 - Input capacitance varies with each scope
 - Tunable capacitor on probe
- Compensation procedure
 - Connect probe to reference square wave
 - Tune probe until wave is square

Adapted from http://www.syscompdesign.com/assets/Images/AppNotes/probes.pdf
Check your Understanding

Show me you know what you’re doing!

Generate a square wave with these characteristics and show it on your scope:

- low voltage = 0v
- high voltage = 5v
- period = 10ms
- high time = 2ms
Questions?

solid?

we're all testing pros now, right?
Project Proposals
Focus: Planning & Reliability

- Measure once, cut twice, then hammer
- Measure twice, cut once
- Start thinking about high-level project plan
 - Plan ahead and examine feasibility
 - Get feedback on design ideas
- Reliability first, THEN performance
 - “Better is the enemy of the good”
 - Fast car going into a wall gets you a F minus minus

One weird trick to flunk ee192!
image from LOLCaption.com
Mechanical: Tips n’ Tricks

- **Goal:** show us that you have a solid plan for mounting boards / other mechanisms
 - Level of detail: screw holes, dimensions
- Paper and pencil is acceptable
 - Possibly even the most expedient solution
- Cameraphone to take and annotate photos
- Draw over picture in Paint or PowerPoint
 - Can even be physically accurate
- SolidWorks only if you know how
 - Parametric CAD is really, really nice, but not worth learning for this

Use the provided diagrams!

Links: (top) (side) (CAD)
Electrical: Tips n’ Tricks

- **Goal:** show us that you know motor driver design and have a board layout plan
 - Please NO ROUTED BOARDS!
- **Quick demo:** EAGLE schematic and layout
 - Big idea: EDA tools are easy to use!
 - Feel free to use better design software, like DipTrace or even KiCAD
- **And you can get them for free!**
 - ... as in beer: (DipTrace) (EAGLE)
 - ... as in speech: (KiCAD)
- **Tutorials** for each can easily be found on the intertubes

Library links:

EAGLE only (for now!)
Schematic Style

- Style? Why do I care?!
 - Confusing designs hide errors
 - Helps reviewers understand your circuit
- Component placement
 - Dataflow ordering: left-to-right
 - Voltages: high-to-low on top-to-bottom
- Modularizing your schematic
 - Use tunnels to minimize intersections and decouple schematic blocks
 - Use global voltage rails
- Perfect is impossible
 - ... but you CAN minimize stylistic badness

Global power rails

Decoupling using tunnels
Questions?

got it?

we can all write awesome project proposals now, right?
Car Critiques
Goal: don’t reinvent the wheel
- Take design cues from those who came before you - recognize and use good ideas
- Conversely, learn from other’s mistakes, so you don’t have to repeat them

Some design points to consider:
- Idiot-proofing
- Robustness
- Maintainability
- Design for Test
- Anything else you want to add?

It’s been done before (don’t repeat it!)

©Fox
Group Car Critiques

Break into your teams and critique your cars

if your team doesn’t have an assembled car, pair with one that does

Take 10 minutes to discuss amongst yourselves

(I’ll walk around to help out and offer suggestions!)

then you’ll present your findings to the class

(aim for about 3 minutes, then we’ll give others a chance to chime in)

Stuck? Consider these desirable features:

Idiot-proofing
we’re not idiots, but not everyone has had their coffee

Robustness
because, well, crash happens...

Maintainability
how can you make fixing a blown board easy?

Design for Test
things WILL go wrong; how do you make debug easy?

... and anything else you can think of ...
Car Critique Presentations

Start by introducing yourselves
both as a team and as individuals

Then, talk about your car:
What did you like about your car? Why?
What did not like about your car? Why?
Did you see any good design philosophies?
Is there anything you would have done differently?