MCUExpresso Install, Setup, and Notes for use
with FRDM K64F

January 12, 2019

1. Setup K64F
(May not be needed for some boards or if developing on mac)
e Plug board into USB

e If the drive is named MBED (MBED (K:), MBED (E:), etc.) then
follow the directions to update the bootloader

https://os.mbed.com/blog/entry /DAPLink-bootloader-update/
— Download the binary file 0244_k20dx_bootloader_update_0x5000.bin
e Then install DAPLINK: https://armmbed.github.io/DAPLink/

— Search K64 (select FRDM K64F).
— The board should appear as
— Download the binary file 0244 _k20dx_frdmk64f_0x5000.bin

2. Setup serial port
e Plug board into USB. It should appear as DAPLINK (K:)

e Windows

— Use device manager to find Ports COM#

— Use Putty to connect to COM port from device manager with
baud rate 115200

e Mac

— Open terminal and type: “ls /dev/tty.usbmodem™” you should
see the name of the USB port which the K64F is plugged into
(i.e. /dev/tty.usbmodem1412).

— Type “screen /dev/tty.usbmodem1412 115200”

3. Setup Git or SmartGit (a GUI for git)
e Setup Git| (Command Line) or |Smart Git| (GUI Client)

— For Smart Git: choose github as hosting provider, set master
password if needed, make github acct if you don’t have one, au-
thenticate and enable synteo to access your github

e Clone the repo https://github.com/ucb-ee192/SkeletonMCUX

4. Install and setup M CUExpresso

https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
http://www.syntevo.com/smartgit/
https://github.com/ucb-ee192/SkeletonMCUX

e Install MCUExpresso Version 10.1.0 here

— Version 10.1.0 is not the latest build. Navigate to the ”previous”
tab and download 10.1.0

e Download The K64F SDK vzip file here| (use your Berkeley email
address for access)

e Start MCUExpresso

e Drag the K64F zip file into the "Installed SDK’s” subwindow and
click okay. This will install the K64F SDK

e Check that the K64F SDK installed correctly. Try File— New—

Project— MCUExpresso IDE— New C/C++ Project. Search K64-
you should see the K64F as an option.

[] (] SDK Wizard

@ Creating project for device: MK64FN1MOxxx12 using board: FRDM-K64F

[Proje| . Board and/or Device selection page

-]
~ SDK MCUs Available boards 3% &
MCUs from installed SDKs Please select an available board for your project.
NXP MK64FN1MOxxx12
Ké:
VK6x 4 =]
S MKB4FN1MOxxx12
v >
~ Preinstalled MCUs
v@E| MCUs from preinstalied LPC and
S generic Cortex-M part support frdmk64f
lc Target
> »LPC1102
a »LPC112x
=l rLPCi1AXK
O Quick | »LPC11E6x
»LPC11Exx
E M »Lpc11uex =
»LPC11Uxx g
- sta »LPC11xx
»LPC11xxLV.
B Ne
B im| | selected Device: MK84FN1MOxxx12 using board: FRDM-KB4F SDKs for selected MCU
® im . P
A B
7 cl
L Q)

Cancel
tos)

5. Import HelloWorld and FreeRTOS examples

e File — Open Projects from File System

e Select SkeletonMCUX folder you cloned from github
e projects: frdmk64_skeletonrtos, hello_world_basic

e Hello World

— Open the hello_world_basic folder in the left project explorer
— The main file is in hello_world _basic — source — hello_world_basic.c

https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://drive.google.com/open?id=1oS90K57oRJGY1xvO0BF1FXzH_ndNvpUg

() (] < workspace - Develop - hello_world_basic/source/hello_world_basic.c - MCUXpresso IDE

miAd LR SAERY T2 PRFEH O QG By IREM GG G
24+ @®
= | [BProject) 7. Periphe !liRegiste % Symbol = O | [hello_world_basic.c sols
® i a[& W - || 20MIConGHEIENI2017; KX Sexicondiicton Inc.[] ®
- ¥ ESfrdmk64f_demo_apps_hello_worid 310/ =]
. Eo> frdmkeaf_skeleton [SkeletonMCUX master] 32 % efile helloworld_basic.c a
"~ » [5frdmk64f_skeletonrtos [SkeletonMCUX master] 33 * @brief Application entry point. -
% v LZhello_world_basic [SkeletonMCUX master] g X 3
oz > S 35 #include <stdio.h>
B . B 'é'c‘;dses 36 #include "board.h" 0
ciems 37 #include "peripherals.h” [
» (3board 38 #include "pin_mux.h" 5]
» (S drivers 39 #include "clock_config.h"
> (ffreertos 40 #include "MK64F12.h" =
v &source ,:;1 /% T0DO: insert other include files here. */ =
> [f} FreeRTOSConfig.n 43 /* TODO: insert other definitions and declarations here. */ -
» [} hello_world_basic.c 44
» [} semihost_hardfault.c 458 /*
» (G startup 46 * @brief Application entry point.
» (5 utilities o .
48
» Bydoc i int main(void) {
PAhello_world_basic LinkServer Debug.launch 50 /* Init board hardware. */
PAnello_world_basic LinkServer Release.launch 51 BOARD_Ini tBootPins();
52 BOARD_InitBootClocks();
53 BOARD_Ini tBootPeripherals();
54 /* Init FSL debug console. */
BOARD_Ini tDebugConsole();
56
57 printf("Hello World\n");
58
/* Force the counter to be placed into memory. */
60 volatile static int i =0 ;
61 /% Enter an infinite loop, just incrementing a counter. */
62 while(1) {
63 i+t
64
65 return @ 3
66 1
o
Writable Smart Insert 2:1 U NXP MK64FN1MOxxx12 (hello_world basic)

To build select Debug ‘hello_world_basic’ [Debug] (in the quick
start menu or the blue bug on the top toolbar).

Ignore any firewall requests that might occur (windows machines)

— Probes Discovered window: should show CMSIS-DAP. — OK

— Hello World should print. The program will then increment a
counter in an infinite loop.

— You can exit by clicking the red square on the top tool bar

e FreeRTOS Example
— The main file is in frdm64f_skeletonrtos — source — main.c
— To build select Debug ‘frdm64f_skeletonrtos’ [Debug] (in the quick
start menu or the blue bug on the top toolbar).
— It should print EE192 Spring 2018 16 Dec 2017 v0.0 then blink
the onboard LED
e Release Build in MCUXpresso (Note: use PRINTF not printf)

— Configure MCUXpresso to build a .bin file for drag & drop flash
programming
* Select the project.
* Navigate to Project — Properties — C/C++ Build — Set-
tings — Build Steps
x Select edit on “Post-Build steps”. Uncomment the lines with
commands “arm-none-eabi-objcopy” and “checksum”.

[) Post-build steps

Notes:

- A comment character (#) disables ALL FOLLOWING COMMANDS.
- Enter one command per line.

- After editing, commands are concatenated with a ';' separator.

arm-none-eabi-size "${BuildArtifactFileName}"
arm-none-eabi-objcopy -v -O binary "${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.bin"
checksum -p ${TargetChip} -d "${BuildArtifactFileBaseName}.bin"

cancel | (CISNND

— Change the build settings to “Release” by clicking the hammer
on the top toolbar and selecting “Release”

[) [) < workspace - Develop - frdmk64f_blink_led/source/main.c - MCUXpresso |
i /- @wiw Th PLFEH O Q €O
1 Debug (Debug build)
v 2 Release (Release build)

[Project ¢ Peripher 5! Register Symbol = B) Quickstart Panel = Global Variables (x)=Variables o Breakpoints

e @ M v - MCUXpresso IDE (Free Edition)
» [2%frdmk64f_blink_led (_ioe)
» (5 frdmk64f_skeletonrtos [SkeletonMCUX master]
» 8 hello_world_basic [SkeletonMCUX master] ~ Start here

~
» k=7 > SkeletonMCUX [SkeletonMCUX master] B New project...

] Import SDK example(s)...

® Import project(s) from file system...
Q Build 'frdmk64f_blink_led' [Release]
& Clean 'frdmk64f_blink_led" [Release]
#‘ Debug 'frdmk64f_blink_led' [Release]

— Build the release project (from quickstart panel or by clicking
the hammer)

— Plug in your K64f board. It should appear as DAPLINK

— Copy the file “Project_Location/Project_Name/Release/project_name.bin”
to DAPLINK drive

— A green light will blink rapidly as the program is flashed to the
MCU

— After the green light stops blinking the program has been suc-
cesfully flashed. Hit the reset button to run it

Random Notes

1. There is already a running debug session for the launch.
e Use task manager (windows) or "kill” command line utility on Mac/Linux
to kill any tasks called:

— redlinkserv
— arm-none-eabi-gdb

— crt_emu_*

e Close and reopen project

Stop on console view?

Reopen MCUExpresso
Unplug and Replug in K64F board

2. To see queue in FreeRTOS View Queues
e vQueueAddToRegistry(log_queue, "PrintQueue”);
3. Watch out for printf, fragmenting memory

e Section 12.4 Inappropriate Use of printf() and sprintf(). printf() and
sprintf() may call malloc(), which might be invalid if a memory allo-
cation scheme other than heap_3 is in use. See section 2.2, Example
Memory Allocation Schemes, for more information.

e Add printf-stdarg.c instead. Note: use
e Printf-stdarg.c does not handle floating point. Need to use malloc
intensive floating point printf (builtin).

4. FreeRTOS notes: use FreeRTOS — TaskList to show memory usage

e If running out of stack in FreeRTOSConfig.h change:

o #define configMINIMAL_STACK_SIZE ((unsigned short)128)
e // changed for larger idle task- watch heap size...

o #define configTOTAL_HEAP_SIZE ((size_t)(16 * 1024))

e Task runtime with percentage value. Both configUSE_TRACE_FACILITY
and configGENERATE_RUN_TIME_STATS need to be set to 1, ex-
cept requires bunch of other enables. ..

e How to add watch to stack pointer?

5. Memory view: Use debug view instead of develop view. Memory will
appear in console

Advanced Setup

1.

Change pins if needed to enable LEDs: (See Lab 3 Getting started with
MCUXpresso here)

e right click project name — MCUXpresso config tools — Open pins
e Go to pins and turn on all LEDS. Add 33/PTE26, PTB21, PTB22

e export to board directory, refresh and recompile.

. change FreeRTOSConfig.h to be 1 KHz instead of 200

Quick settings — Set Floating point type — Enable hardware floating
point

Quick Settings — Set Library Header type — NewlibNano (semihost)

NewlibNano: If your codebase does require floating point variants of
printf/scanf, then these can be enabled by going to:

e Project — Properties — C/C++ Build — Settings — MCU Linker
— Managed Linker Script and selecting the ” Enable printf/scanf
float” tick box.

e (Library selection can be reset by quick settings..., so do Newlib-
Nano last)

e Note: Quick settings: — SDK Debug Console — UART (changes
to redlib. ..)

e A further alternative is to put an explicit reference to the required
support function into your project codebase itself. One way to do
this is to add a statement such as: asm (“.global_print{_float”);

e Unfortunately, as redlib does not support C++, we must use newlib
for modern C++ projects.

e PRINTF uses UART, printf uses semihost console.
Add timer component. Manage SDK Components, add driver: pit.c

e (Note in general should be able to right click project name — MCUX-
presso config tools — peripherals. However PIT module is missing,
so needed to be added manually.)

Add explicit idle top level loop (non-real time)

e configUSE_ IDLE_ HOOK must be set to 1 in FreeRTOSConfig.h for
the idle hook function to get called.

e /*Idle hook functions MUST be called vApplicationIldleHook(), take
no parameters, and return void. */

To check stack usage etc, use FreeRT'OS — Task List or FreeRTOS —
Heap Usage

https://community.nxp.com/docs/DOC-334086

CAUTION NOTES TO BE ADDED

For reliability, smaller embedded systems typically don’t use dynamic mem-
ory, thus avoiding associated problems of leakage, fragmentation, and resulting
out-of-memory crashes. In Nadler & Associates smaller embedded projects,
we’ve historically avoided any runtime use of dynamic memory (enforced by
deleting malloc-family routine’s object files from the runtime libraries) printf-
stdarg.c distributed in the FreeRTOS Lab TCPIP example; this one only uses
stack storage but does not implement floating point.

https://community.nxp.com/thread /441637

