
MCUExpresso Install, Setup, and Notes for use

with FRDM K64F

January 12, 2019

1. Setup K64F
(May not be needed for some boards or if developing on mac)

• Plug board into USB

• If the drive is named MBED (MBED (K:), MBED (E:), etc.) then
follow the directions to update the bootloader

• https://os.mbed.com/blog/entry/DAPLink-bootloader-update/

– Download the binary file 0244 k20dx bootloader update 0x5000.bin

• Then install DAPLINK: https://armmbed.github.io/DAPLink/

– Search K64 (select FRDM K64F).

– The board should appear as

– Download the binary file 0244 k20dx frdmk64f 0x5000.bin

2. Setup serial port

• Plug board into USB. It should appear as DAPLINK (K:)

• Windows

– Use device manager to find Ports COM#

– Use Putty to connect to COM port from device manager with
baud rate 115200

• Mac

– Open terminal and type: “ls /dev/tty.usbmodem*” you should
see the name of the USB port which the K64F is plugged into
(i.e. /dev/tty.usbmodem1412).

– Type “screen /dev/tty.usbmodem1412 115200”

3. Setup Git or SmartGit ( a GUI for git)

• Setup Git (Command Line) or Smart Git (GUI Client)

– For Smart Git: choose github as hosting provider, set master
password if needed, make github acct if you don’t have one, au-
thenticate and enable synteo to access your github

• Clone the repo https://github.com/ucb-ee192/SkeletonMCUX

4. Install and setup MCUExpresso

1

https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
http://www.syntevo.com/smartgit/
https://github.com/ucb-ee192/SkeletonMCUX


• Install MCUExpresso Version 10.1.0 here

– Version 10.1.0 is not the latest build. Navigate to the ”previous”
tab and download 10.1.0

• Download The K64F SDK zip file here (use your Berkeley email
address for access)

• Start MCUExpresso

• Drag the K64F zip file into the ”Installed SDK’s” subwindow and
click okay. This will install the K64F SDK

• Check that the K64F SDK installed correctly. Try File→ New→
Project→ MCUExpresso IDE→ New C/C++ Project. Search K64-
you should see the K64F as an option.

5. Import HelloWorld and FreeRTOS examples

• File → Open Projects from File System

• Select SkeletonMCUX folder you cloned from github

• projects: frdmk64 skeletonrtos, hello world basic

• Hello World

– Open the hello world basic folder in the left project explorer

– The main file is in hello world basic→ source→ hello world basic.c

2

https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://drive.google.com/open?id=1oS90K57oRJGY1xvO0BF1FXzH_ndNvpUg


– To build select Debug ‘hello world basic’ [Debug] (in the quick
start menu or the blue bug on the top toolbar).

– Ignore any firewall requests that might occur (windows machines)

– Probes Discovered window: should show CMSIS-DAP. → OK

– Hello World should print. The program will then increment a
counter in an infinite loop.

– You can exit by clicking the red square on the top tool bar

• FreeRTOS Example

– The main file is in frdm64f skeletonrtos → source → main.c

– To build select Debug ‘frdm64f skeletonrtos’ [Debug] (in the quick
start menu or the blue bug on the top toolbar).

– It should print EE192 Spring 2018 16 Dec 2017 v0.0 then blink
the onboard LED

• Release Build in MCUXpresso (Note: use PRINTF not printf)

– Configure MCUXpresso to build a .bin file for drag & drop flash
programming

∗ Select the project.

∗ Navigate to Project → Properties → C/C++ Build → Set-
tings → Build Steps

∗ Select edit on “Post-Build steps”. Uncomment the lines with
commands “arm-none-eabi-objcopy” and “checksum”.

3



– Change the build settings to “Release” by clicking the hammer
on the top toolbar and selecting “Release”

– Build the release project (from quickstart panel or by clicking
the hammer)

– Plug in your K64f board. It should appear as DAPLINK

– Copy the file “Project Location/Project Name/Release/project name.bin”
to DAPLINK drive

– A green light will blink rapidly as the program is flashed to the
MCU

– After the green light stops blinking the program has been suc-
cesfully flashed. Hit the reset button to run it

4



Random Notes
1. There is already a running debug session for the launch.

• Use task manager (windows) or ”kill” command line utility on Mac/Linux
to kill any tasks called:

– redlinkserv

– arm-none-eabi-gdb

– crt emu *

• Close and reopen project

• Stop on console view?

• Reopen MCUExpresso

• Unplug and Replug in K64F board

2. To see queue in FreeRTOS View Queues

• vQueueAddToRegistry(log queue, ”PrintQueue”);

3. Watch out for printf, fragmenting memory

• Section 12.4 Inappropriate Use of printf() and sprintf(). printf() and
sprintf() may call malloc(), which might be invalid if a memory allo-
cation scheme other than heap 3 is in use. See section 2.2, Example
Memory Allocation Schemes, for more information.

• Add printf-stdarg.c instead. Note: use

• Printf-stdarg.c does not handle floating point. Need to use malloc
intensive floating point printf (builtin).

4. FreeRTOS notes: use FreeRTOS → TaskList to show memory usage

• If running out of stack in FreeRTOSConfig.h change:

• #define configMINIMAL STACK SIZE ((unsigned short)128)

• // changed for larger idle task- watch heap size...

• #define configTOTAL HEAP SIZE ((size t)(16 * 1024))

• Task runtime with percentage value. Both configUSE TRACE FACILITY
and configGENERATE RUN TIME STATS need to be set to 1, ex-
cept requires bunch of other enables. . .

• How to add watch to stack pointer?

5. Memory view: Use debug view instead of develop view. Memory will
appear in console

5



Advanced Setup
1. Change pins if needed to enable LEDs: (See Lab 3 Getting started with

MCUXpresso here)

• right click project name → MCUXpresso config tools → Open pins

• Go to pins and turn on all LEDS. Add 33/PTE26, PTB21, PTB22

• export to board directory, refresh and recompile.

2. change FreeRTOSConfig.h to be 1 KHz instead of 200

3. Quick settings → Set Floating point type → Enable hardware floating
point

4. Quick Settings → Set Library Header type → NewlibNano (semihost)

5. NewlibNano: If your codebase does require floating point variants of
printf/scanf, then these can be enabled by going to:

• Project → Properties → C/C++ Build → Settings → MCU Linker
→ Managed Linker Script and selecting the ” Enable printf/scanf
float” tick box.

• (Library selection can be reset by quick settings. . . , so do Newlib-
Nano last)

• Note: Quick settings: → SDK Debug Console → UART ( changes
to redlib. . . )

• A further alternative is to put an explicit reference to the required
support function into your project codebase itself. One way to do
this is to add a statement such as: asm (“.global printf float”);

• Unfortunately, as redlib does not support C++, we must use newlib
for modern C++ projects.

• PRINTF uses UART, printf uses semihost console.

6. Add timer component. Manage SDK Components, add driver: pit.c

• (Note in general should be able to right click project name→MCUX-
presso config tools → peripherals. However PIT module is missing,
so needed to be added manually.)

7. Add explicit idle top level loop (non-real time)

• configUSE IDLE HOOK must be set to 1 in FreeRTOSConfig.h for
the idle hook function to get called.

• /* Idle hook functions MUST be called vApplicationIdleHook(), take
no parameters, and return void. */

8. To check stack usage etc, use FreeRTOS → Task List or FreeRTOS →
Heap Usage

6

https://community.nxp.com/docs/DOC-334086


CAUTION NOTES TO BE ADDED

For reliability, smaller embedded systems typically don’t use dynamic mem-
ory, thus avoiding associated problems of leakage, fragmentation, and resulting
out-of-memory crashes. In Nadler & Associates smaller embedded projects,
we’ve historically avoided any runtime use of dynamic memory (enforced by
deleting malloc-family routine’s object files from the runtime libraries) printf-
stdarg.c distributed in the FreeRTOS Lab TCPIP example; this one only uses
stack storage but does not implement floating point.

https://community.nxp.com/thread/441637

7


