Track Memorization

EE192 Spring 2019
Lab Lecture 13: April 24, 25
Justin Yim
Track Memorization

• Objective: use prior knowledge to run the track faster on the second lap
 – “Anticipate” turns
 – Optimize path

• Two related problems:
 – Mapping: where is the track?
 – Localization: where am I?

 – Note: we do not need *Simultaneous* Localization and Mapping (SLAM); we will do one, then the other
Track Memorization

• Three steps:
 1. **Map** the track
 2. **Plan** a trajectory for lap two
 3. Follow the planned trajectory with **localization** and control (you already have control)
1. Mapping
1. Mapping

- Objective: record the track layout
- During mapping phase, assume the car’s position estimate is perfect to record location of track features
- Use wheel odometry, integrated velocity, etc. for distance
 - Go slow so the car doesn’t slip or behave oddly
1. Mapping

• Several possible parameterizations:
 – 2D track path (like a map)
 • con: complex loop closures

Note: NATCAR explicitly bans pre-coding the track and allows memorizing it
1. Mapping

• Several possible parameterizations:
 – 1D list of track features (like driving directions)
 • Steps, heading, etc.
 • Most important: curvature

Map distance, NOT time:
lap 2 distance is equal,
but time is faster
1. Mapping

- How to store the map?
- A 1D map of curvature could be stored simply in a very long array of ints
 - I’m using a 20,000 element array of ints recording curvature in centi-radians/meter every 10 cm
2. Trajectory Planning
2. Trajectory Planning

- Recall the friction performance limits
- The car can corner only so fast and accelerate/brake only so fast

- Back of the envelope limits:
 - \(a_r = \frac{v^2}{r} \)
 - \(a_\theta = \frac{dv}{dt} \)
 - \(\vec{a} = ||a_r + a_\theta||_2 \leq \mu g \)

- Car dynamics caveats:
 - Lateral and longitudinal weight shift
 - More complex tire dynamics
2. Trajectory Planning

- Optimal trajectory operates the car near the friction limit as much as possible
 - Take corners at maximum cornering speed
 - Maximum acceleration/braking on the straightaways

- How do we come up with a good velocity plan?

Friction cone

\[F_n + F_f \]

Friction cone top view

\[F_f \]
2. Trajectory Planning

Justin’s strategy: simplifying assumptions:
1. Ignore coupling between a_r and a_θ
2. Top speed v_{max}
3. Max acceleration a_{max}
4. Max braking a_{min}

Friction cone top view

Friction “Box”?
2. Trajectory Planning

Justin’s strategy:

1. \(v = \sqrt{\mu g r} \)

Note \(r = \frac{1}{\text{curvature}} \)
2. Trajectory Planning

Justin’s strategy:

– 2. $v \leq v_{max}$
2. Trajectory Planning

Justin’s strategy:

– 3. $dv/dt \leq a_{\text{max}}$
2. Trajectory Planning

Justin’s strategy:

- 4. $\frac{dv}{dt} \geq a_{\text{min}}$
2. Trajectory Planning

Justin’s strategy can be computed in two for loops: one forwards and one backwards

- Forwards: set $v = \sqrt{\mu gr}$, $v \leq v_{max}$, $dv/dt \leq a_{max}$
- Backwards: set $dv/dt \geq a_{min}$
2. Trajectory Planning

I didn’t save the plan, so here is the TA car telemetry from following it.

![Graphs showing velocity and curvature over time.](image-url)
3. Localization
3. Localization

- Assume the map is perfect and correlate observed sensor readings with the map to estimate location.

- This can be formulated as Bayesian estimation.
3. Localization

- This can be formulated as Bayesian estimation:
 - Probability distribution for distance along track
 - 1. Initial location (a “tracking” problem: we know start)
3. Localization

- This can be formulated as Bayesian estimation:
 - 2. Use dynamics to predict our position \(x \quad+\quad v \Delta t \)
 - Move forward and uncertainty increases
3. Localization

- This can be formulated as Bayesian estimation:
 - 3. Compare sensor readings to environment
 - Uncertainty should decrease (e.g., we see a step)
3. Localization

• This can be formulated as Bayesian estimation:
 – 2. Use dynamics to predict our position x
 – 3. Compare sensor readings y to map

Bayes rule

$$p(x|y) = \frac{p(y|x) p(x)}{p(y)}$$
3. Localization

- This can be formulated as Bayesian estimation:
 - 2. Use dynamics to predict our position x
 - 3. Compare sensor readings y to map

Bayes' rule:

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

- New distribution
- Sensor match
- Previous distribution

Localization
3. Localization

- Justin’s strategy:
 - Distribution is discretized into five points
 - For each point, compare sensor reading and map:

![Diagram showing localization process with measured curvature and distance metrics.](image-url)
3. Localization

- Justin’s strategy:
 - Distribution is discretized into five points
 - Heuristic likelihood of $p(y|x)$
3. Localization

- Justin’s strategy:
 - Distribution is discretized into five points
 - Heuristic likelihood of $p(y|x)$

\[
p(y|x) / p(y)
\]

Distance (meters)

Localization

Good matches Bad matches
3. Localization

- Justin’s strategy:
 - Distribution is discretized into five points
 - For each point, apply Bayes rule:

\[
p(y|x) \frac{p(x)}{p(y)}
\]
3. Localization

- Justin’s strategy:
 - Distribution is discretized into five points
 - For each point, apply Bayes rule:

\[
p(y|x) \cdot \frac{p(x)}{p(y)} = p(x|y)
\]
3. Localization

- Justin’s strategy:
 - Distribution is discretized into five points
 - Update distribution (note I used only the mean and ignored the standard deviation as a hack)

\[
\frac{p(y|x)}{p(y)} \cdot p(x) = p(x|y)
\]
3. Localization

• Justin’s strategy:
 – Distribution is discretized into five points
 – Update distribution (note I used only the mean and ignored the standard deviation as a hack)
3. Localization

- More principled approaches (fewer hacks):
 - Kalman filters (with adjustment for nonlinearity):
 - **Extended Kalman filter** (using linearization)
 - **Unscented Kalman filter** (principled sampling)
 - **Particle filters** (many random samples)
 - (Justin’s approach uses heuristic hacky sampling)

- All methods use the two step process:
 1. Use dynamics to predict location
 2. Update location with sensor correlation (Bayes rule)
3. Localization

- For more information, see presentations like: https://www.cs.cmu.edu/~motionplanning/lecture/Chap9-Bayesian-Mapping_howie.pdf