EECS 192: Mechatronics Design Lab

Discussion 11: Tips

GSI: Justin Yim

10 & 11 April 2019 (Week 11)

- Tips
- Automatic Gain Control
Integration Troubles

- Car integration problems
 - BBBL dies on power loss

- Potential solutions
 - 5V power may be safer
 - Make a benchtop harness that connects to the battery port (so it can't be left in)
 - Methodical board bring-up: verify system modules are working in isolation (verify expected signals before applying full battery power, etc.)
Integration Troubles

- Car integration problems
 - BBBL dies on power loss

- Potential solutions
 - 5V power *may* (link) be safer
Integration Troubles

- Car integration problems
 - BBBL dies on power loss
 - How to share grounds when the BBBL is powered over USB on the bench?

- Potential solutions
 - 5V power *may* (link) be safer
Integration Troubles

- Car integration problems
 - BBBL dies on power loss
 - How to share grounds when the BBBL is powered over USB on the bench?

- Potential solutions
 - 5V power *may* be safer
 - Make a benchtop harness that connects to the battery port (so it can’t be left in)
Integration Troubles

- Car integration problems
 - BBBL dies on power loss
 - How to share grounds when the BBBL is powered over USB on the bench?
 - Board fries when it is first powered on

- Potential solutions
 - 5V power *may* (link) be safer
 - Make a benchtop harness that connects to the battery port (so it can’t be left in)
Integration Troubles

▶ Car integration problems
 ▶ BBBL dies on power loss
 ▶ How to share grounds when the BBBL is powered over USB on the bench?
 ▶ Board fries when it is first powered on

▶ Potential solutions
 ▶ 5V power *may* (link) be safer
 ▶ Make a benchtop harness that connects to the battery port (so it can’t be left in)
 ▶ Methodical board bring-up: verify system modules are working in isolation (verify expected signals before applying full battery power, etc.)
Motor Troubles

- Problem: circuits behave differently with motor attached. Why?

Image from (link)
Motor Troubles

- Problem: circuits behave differently with motor attached. Why?
- The motor draws a lot of current and generates a lot of EMI. How to debug?

Image from (link)
Motor Troubles

- Problem: circuits behave differently with motor attached. Why?
- The motor draws a lot of current and generates a lot of EMI. How to debug?
- Check line resistance with multimeter and check noise with oscilloscope. What are some design fixes?
Motor Troubles

- Problem: circuits behave differently with motor attached. Why?
- The motor draws a lot of current and generates a lot of EMI. How to debug?
- Check line resistance with multimeter and check noise with oscilloscope. What are some design fixes?
- Thick traces & wires for low resistance, better shielding (ground planes, filter caps, diodes, cable assembly)
Automatic Gain Control
So the lighting on the 3rd floor is different than in the lab?

Solutions

- External Lights (LED, flashlights, etc.)
- Robust line detection (derivatives, LPF, cross correlation - see discussion 8)
- Automatic Gain Control!!
Automatically generated captions:

Figure Caption:

The figure illustrates the timing diagram for TSL1401 with and without automatic gain control.

- **Capacitor Voltages:**
 - Img1 = Garbage
 - Img2 = Voltages Charging
 - Img3 = Voltages Charging
 - Img4 = Voltages Charging
 - Img5 = Voltages Charging

- **Camera [128] (in software):**
 - Undefined
 - Img1 = Garbage
 - Img2
 - Img3
 - Img4

- **Exposure Time:**
 - Line indicates exposure time intervals.

- **SI and CLK Signals:**
 - Various patterns are shown, indicating signal timing.

Timing Analysis:

- The diagram shows the impact of automatic gain control on the timing of voltages and signals.
- Automatic gain control is reflected in the stability and sequence of voltages and exposure times.

Conclusion:

The use of automatic gain control optimizes the timing for clearer and more reliable image capture as per the specified conditions.
Pseudocode (PRU)

```c
void take_pic()
{
    SI High;
    CLK High;
    SI Low;
    for (i=0 to 128)
    {
        CLK High;
        camera[i] = read_adc();
        CLK_Low;
    }
}
```

- Each call to take pic reads out the previous capacitor voltages
- There is currently no exposure control
TSL1401 timing

- Don’t need to read garbage frames!
- Don’t need to read garbage frames!
- Removing read_adc speed’s up code execution significantly
Automatic Gain Control

Pseudocode (PRU)

```c
void take_pic(int mode) {
    SI High;
    CLK High;
    SI Low;
    for (i=0 to 128) {
        CLK High;
        if (mode == 1) // Read
            camera[i] = read_adc();
        CLK_Low;
    }
    if (mode == 0) // Delay
        delay(camera_delay);
    else // Read
        adjust_camera_delay();
    // How might you do this?
}

void take_agc() {
    /* Clock out garbage data & expose new image */
    take_pic(0);
    /* Read new image and update exposure delay */
    take_pic(1);
}
```

Ducky (UCB EECS) Mechatronics Design Lab 10 & 11 April 2019 (Week 11)
```c
int main()
{
    take_agc();
    find_line();
    estimate_velocity();
    calculate_new_controls();
    telemetry.do_io();
}

void interrupt_handler()
{
    apply_servo_control();
    apply_motor_control();
}
```

- **Pro** - interrupt executes very quickly - potentially easier to debug
- **Con** - Potentially updating servo/motor control on old sensor readings
```c
int main()
{
    take_agc();
    find_line();
    estimate_velocity();
    calculate_new_controls();
    apply_servo_control();
    apply_motor_control();
    telemetry.do_io();
}
```

- Pro: Updating servo/motor control on newest sensor readings
- Con: No interrupt to enforce timing