EECS 192: Mechatronics Design Lab

Discussion 7: Camera

GSI: Justin Yim

6 & 7 Mar 2019 (Week 7)

- Line Sensing
- Embedded Software
- Summary
Line Sensing
Let’s look at one specific frame
Linescan 100

frame[100] - mean(frame[100])
Which pixels correspond to which points in front of the car?
- Pinhole camera model
- Can calibrate centimeters-to-pixels gain for a fixed camera distance

\[
\frac{x}{l} = \frac{y}{f}
\]
How can we find the index of the line?
Take the argmax!
Line Scan Detection: Maximum Method

Any potential issues?
What about noise, track crossings, other bright objects, etc.?
Line Sensing

Argmax Based Detection

What about- noise, track crossings, other bright objects, multiple peaks, etc.?
$I(x, t) = \text{Intensity at pixel } x$

What if we look at the derivative $\frac{dI(x)}{dx}$?
\[
\frac{dI(x)}{dx} \approx \frac{I(x+1) - I(x)}{1}
\]
Convolution!

\[\dot{I}(x) = I(x + 1) - I(x) = I \ast [1, -1] \]
Convolution!

\[\dot{I}(x) = I(x + 1) - I(x) = I \ast [1, -1] \]
Convolution!

\[\dot{I}(x) = I(x + 1) - I(x) = I \ast [1, -1] \]
Convolution!

What about all that **high frequency** noise?
Low Pass Filter!

\[I(x) \ast LPF \ast [1, -1] = I(x) \ast (LPF \ast [1, -1]) \]
Low Pass Filter (Gaussian)!

\[I(x) \ast LPF \ast [1, -1] = I(x) \ast (LPF \ast [1, -1]) \]
Low Pass Filter (Gaussian)!

Line Scan Detection: Gaussian (LPF) Method

High frequency noise gone!
Laplacian of Gaussian (low-passed second derivative)
Can also be approximated with difference of Gaussians

Detect a bright line of the expected width
What about... Temporal Differencing?

\[
\frac{dI(x)}{dt} \approx \frac{I(t) - I(t-1)}{\Delta t}
\]
What about... Temporal Differencing?

Good for removing constant bias in parts of the image.
More Ideas!

- Difference of Gaussians (Bandpass- not just Lowpass)
- Cross Correlation with known signal
- Convolutional Neural Networks??

![Diagram of machine learning network]

- 1 x 90, 3 Channel Input (X, Y and Z components of accelerometer)
- 1D Convolution
- 1D Max-Pooling
- Fully Connected
- Softmax
Potential Issues?

- What to do if there are multiple track crossings?
- Can’t find the line
- Other Issues?

Solutions!

- Maintain a history (previous line pos, camera scan, etc.)
- Ignore the problem(s) and go fast!
- Anything else?
Embedded Software
Modularity

- Code is starting to get complicated
 - Pthreads, PRU, UART, GPIO, ADC etc.
- Many tasks to run on a single core CPU
 - Velocity Measurement
 - Line Finding
 - PID Controllers (steering and velocity)
 - Telemetry
 - Others?
General Tips

- Remove unnecessary threads. This will make debugging easier later on.
- Build modular code, **test components in isolation**
- Minimize dynamic memory allocation aka malloc & free (memory fragmentation)
- Save logfiles
- Keep things simple!
Many ways to do line detection (max, differencing, gaussian smoothing, temporal differencing, etc.)

Camera calibration

Embedded Software tips