5.1) **Retarded Potential (time-domain):** Consider the scalar potential produced by two time-varying sources. One source is at \(x_1 = (0,0,0) \) and has charge \(q_1(t) \), the other is at \(x_2 = (a,0,0) \) and has charge \(q_2(t) \).

a) Using the scalar potential from a point charge write down a general expression for \(\Phi(x,y,z,t) \).

b) Find the Electric field contributed by this potential \(E(x,y,z,t) \) far from the source in the \(z = 0 \) plane.

c) Repeat part b) for a large distance in a direction \(\mathbf{n} = (\cos \phi, \sin \phi, 0) \).

d) Now suppose \(q_2(t) = q_1(t - \tau) \). Find the value of \(\tau \) that will synchronize the contributions from the two sources regardless of the time-variation of \(q_1(t) \).

e) Show how the delay can be described through using \((x_2 \cdot n) \).

f) Find \(E(R,0,0,t) E(R,0,0,t) \) where \(R \gg a \), and show that it is given by \(\mathbf{E}_1 \mathbf{E}_1 + \mathbf{E}_2 \mathbf{E}_2 \) plus a cross term proportional to \(\mathbf{E}_1 \mathbf{E}_2 \) and involving the delay between the sources.

5.2) **Retarded Potential (frequency-domain):** Now reconsider the two point time-varying source in Problem 5.1.

a) Find an expression for \(\Phi(x,y,z,\omega) \).

b) Find the Electric field contributed by this potential \(E(x,y,z,\omega) \) far from the source in the \(z = 0 \) plane. Hint use \(n = (\cos \phi, \sin \phi, 0) \).

c) Using the curl \(\mathbf{E} \) Maxwell equation find \(\mathbf{H}(x,y,z,\omega) \) far from the source in the \(z = 0 \) plane.

d) Show that \(\mathbf{H}(x,y,z,-\omega) = \mathbf{H}^*(x,y,z,\omega) \).

e) For the case of \(q_2(t) = q_1(t - \tau) \), find \(q_2(\omega) \) in terms of \(q_1(\omega) \).

f) Find the product \(E(R,0,0,\omega) E(R,0,0,\omega) \) where \(R \gg a \), and show that it is given by \(\mathbf{E}_1 \mathbf{E}_1 + \mathbf{E}_2 \mathbf{E}_2 \) plus a cross term proportional to \(\mathbf{E}_1 \mathbf{E}_2 \) and involving the phase between the sources and \((x_2 \cdot n) \).

4.3) **Green’s Function in Time-harmonic:** Consider the interior of a grounded box defined by the six planes, \(x = 0, y = 0, z = 0, x = a, y = b, \) and \(z = c \). A time-varying charge source is given by \(q(x,y,z,t) = \delta(x-d)\delta(y-e)\delta(z-f)\delta(t-\tau) \).

a) Convert this source to a Fourier representation using \(q(x,y,z,\omega) \).

b) Use the N-dimensional eigenfunctions and the scaler wave equation to find the solution for the potential inside the box.

c) Describe what happens to the potential when the time-harmonic frequency contribution \(\omega^2 \mu \epsilon \) hits an eigenvalue.

d) Suppose instead you had used the N-1 eigenfunction expansion method what would happen when \(\omega^2 \mu \epsilon \) hits an eigenvalue and then increases further?

Buzz Lighyear sez “To infinity and beyond.”