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EE243 Advanced Electromagnetic Theory

Lec #3: Electrostatics (Apps., Form), 

• Electrostatic Boundary Conditions
• Energy, Force and Capacitance
• Electrostatic Boundary Conditions on Φ
• Image Solutions Example Green’s Functions
• Integral Formulation

Reading: Jackson 
1.11, 2.1-2.5, 1.7-1.10
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Electrostatic Boundary Conditions

• Div D = ρ

D terminates on surface charge on a conductor
dΦ/dn = σ/ε0

• How about for Φ?
– Jackson 1.6 evaluates dipole layer D(x)

– Thus Φ is continuous unless there is a surface dipole 
layer
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Energy

• Electrostatic potential is potential energy of a 
charge

• Add a charge to m-1 charges =  m-1 terms
• Repeat to add more charges (leaving out self-

interactions) to get N charges
• Put in symmetric form (un-nest do loops to get ½

of regular double sum)
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Jackson 1.11
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Energy (Cont.)
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Use Poisson’s Equation
Integrate by parts
Rewrite as E field

Physical interpretation: The electrostatic energy is 
stored in space as (1/2)DE and there is stored energy 
any time that the electric field is non-zero.
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Force
• Calculated from change in energy for a small 

virtual displacement ∆W = F ∆x.
• Force per unit area ∆a due to surface charge 

• Volume ∆a∆x

• Outward force per unit area
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Capacitance

• Capacitance is defined as the charge per unit 
voltage when all other conductors are grounded

• Mutual capacitance is charge per unit voltage 
difference when a pair have equal and opposite 
charge and all other conductors are grounded

• Potential is sum over charges 
• Potential Energy found by adding new potential to 

m-1 => half double sum (1/2)CijViVj
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Method of Images
• Under favorable (and rare) conditions inferred 

from a geometry a small number of external 
charges can simulate the required boundary 
conditions. 

• Examples for Dirichlet (G = 0 on boundary)
– Charge above a conducting plane

• Charge -q at position -y
– Charge in a 360/n wedge
– Charge outside a conducting sphere

• Charge -aQ/y at y’= a2/y
– Charge inside a spherical hole in a conductor 

• Examples of Neumann = Are there any?

Jackson 2.1-2.4
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Conducting Sphere in a Uniform E field

• Consider two charges (to create uniform field in 
limit R => infinity and Q/R2 constant)
– -Q at y = R and +Q at y = -R

• Add images to make G = 0
– +aQ/R at +a2/R and –aQ/R at –a2/R

• Potential is 4 terms
• Assume R >> a; use 1/(1+x)1/2 approx. 1-x
• Take limit R => infinity and Q/R2 constant
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Jackson 2.5
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Conducting Sphere - Uniform E field (Cont.)
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Physically interpret as dipole (charge times separation)

Surface charge density (from D normal) is 3D

D is 3D times volume and is oriented 
directly opposite to the applied field
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Green’s Theorem and Integral
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Green’s 2nd Identity (Theorem)

Use φ = Φ and  Poisson’s Equation for F 
Use ψ = G any solution to Poisson’s Equation for one point 
charge in the internal region and any boundary conditions on dV
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Common Case: Integral Representation with 
the Free Space Green’s Function
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Need to know:
1) Charge distribution in interior
2) The potential on the boundary
3) The derivative of the potential normal to the boundary 
on the boundary (surface charge)



Copyright 2006 Regents of University of California
12

EE 210 Applied EM Fall 2006, Neureuther Lecture #03 Ver 09/03/06

Example Green’s Function Application

• Observation point is in solution region
• Surface integration points are on boundary
• Volume integration is over solution region
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ρ(x’)Surface Charge Patches x = Observation Point

Surface Potential

x’ = Boundary Integration Point


