
Copyright 2006 Regents of University of California
1

EE 210 Applied EM Fall 2006, Neureuther Lecture #05 Ver 09/10/06

EE243 Advanced Electromagnetic Theory

Lec # 5: Boundary Value Problems 

• Touch up Reciprocity, Variation, Finite-Element
• Orthogonal functions
• Constant Product of Widths (Space x Spectrum)
• Initial-Final Asymptotic Behavior
• Summation of Complex Series
• Start Separation of Variables N-1 Dimensions

Reading: Jackson 
2.8-2.12, 3.4
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Reciprocity

Φ(x2,q1) = Φ(x1,q2)
Proof:
• Green’s Theorem
• Poisson’s equation for Φ(x2,q1) and Φ(x1,q2) causes 

volume integral to give Φ(x2,q1) - Φ(x1,q2)
• In surface integral use homogeneous boundary 

condition to replace potential with derivative and 
integrand vanishes at every point on the boundary

Conducting Object

Position 1 = x1

charge 2 = q2

charge 1 = q1

Position 2 = x2

Reciprocity for
Green’s Function in Jackson
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Variational Approaches

• Energy like functionals are useful as physical 
systems have minimal energy corresponding to 
minimizing these functionals

• The above functional has 
– energy stored in fields in volume
– Minus work done on sources g in volume
– Minus energy flow away across the boundary

• Look at change 
– Require             vanish independent of change
– Gives Poisson’s equation source g and 
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Finite Element Methods

• Here φ(x,y) is a test function that is zero on boundary 
(Dirichlet)

• This boundary condition makes the integrals equal
• Choose φij(x,y) linear on rectangle or triangle i,j and zero 

elsewhere and express in 4 or 3 node values
• Represent solution: Cover domain 
• Put this representation into the right hand integral and let φ

= φij(x,y) 
• Repeat for each rectangle or triangle and get one equation 

that is sparse in node values
• Solve for node values

Jackson 2.12 2D Example
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Orthonormal Functions and Expansions

• Ortohnormal
functions

• Approx. Sum
• Mean Square Min.
• Coefficient
• Convergs to the 

mean at 
discontinuities

• Completeness
• Mean Square

Jackson 2.8
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Fourier Series Example

• Interval –a/2 to a/2
• Normalized sqrt(2)/a sin(2πmx/a) and 

cos(2πmx/a) plus constant 
• f(x) = 2/a integral f(x) times sin or cos

Jackson 2.8 pp 68
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Fourier Integral Example

• Infinite domain => continuous distribution
• A(k) = spectral distribution or spectrum 
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Constant Space Bandwidth Product

• Let ∆x = rms deviation f(x) = sqrt ave|f(x)|2

• Let ∆k = rms deviation A(k)= sqrt ave|A(k)|2

• Then ∆x∆k > or eq. ½

Examples:
• pulse width times bandwidth < or eq. K
• laser beam size times divergence < or eq. K
• Size source times number of eigenfunctions

Jackson pp. 324Horse Sense to check Answers
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Initial-Final Asymptotic Behavior

• Laplace Transforms have the above asymptotic behaviors
• Fourier Transforms and Fourier Series in space have 

similar asymptotic behaviors.
Examples:
• FT or FS step (v = 0) has spectrum 1/k or 1/n
• FT of FS linear function (v = 1) has spectrum 1/k2 or 1/n2

• FT or FS delta function is constant
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Edge and Corner Conditions

• Derived from separation of variables in 
cylindrical and spherical coordinates

• Edge with open angle β in rad. => ρ(π/β-1)

– 90 degree open β= π/2 => ρ(0.5)

– 270 degree open β= 3π/2 => ρ(−0.33)

– 360 degree open β= 2π => ρ(−0.5)

• Conical hole or sharp point r(ν-1) data Fig. 3.6
– Low fields in holes
– Small tips ν = 0.2 to 0.1

Jackson 2.11 3.4
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Summation of Complex Series

• Fourier Transforms/Series, multiple reflections in 
electrodynamics, etc. lead to many complex 
expansions that can be summed up in closed form 
when estimating values.

• Be careful near z = 1

Horse Sense to check Answers Jackson 2.10
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Separation of Variables: Geometry

• Interior of a grounded conducting box bounded by 
planes of x = o, y = 0, z = 0, x = a, y = b, and z = c

• Point charge q at (d,e,f)

x

z

y

c

b
z = f
plane

Point Source
(d,e,f)

a

Jackson 2.9
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Separation of Variables: Product

• Method for solving differential equations by 
forming products that depend on one variable only 
and summing over all possible combinations of 
functions.

• Key Argument: Each term contains a function of 
one variable only and to hold for arbitrary values 
of all three variables each term must be constant 
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Separation of Variables: Eigenvalues

• Two oscillator (sin) and one 
exponentially damped (sinh)

• Boundary condition 
constraint gives discrete 
values of αn = nπ/a and βm = 
mπ/b.

• Then γnm picks up the slack 
to satisf PDE

• Two BC in z give Z(z)
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Separation of Variables: Representation

• Sum is over eigenvalues in N-1 dimensions
• Note that the boundary conditions for x=0, x = a 

and for y=0 and y= b are met by sin behavior
• Note that the boundary conditions at z = 0 and z = 

c have already been applied in sinh behavior.

))(sinh()sin()sin(),,(

)sinh()sin()sin(),,(

1,

1,

zcyxBzyx

zyxAzyx

nmmn
mn

nm

nmmn
mn

nm

−=Φ

=Φ

∑

∑
∞

=

∞

=

γβα

γβα

Jackson 2.9



Copyright 2006 Regents of University of California
16

EE 210 Applied EM Fall 2006, Neureuther Lecture #05 Ver 09/10/06

Separation of Variables: Source Strategy

• View source as being on z = f plane.
• Require Φ2 - Φ1 =D(x,y)/ε0 at z = f
• Also require at z =f 
• Multiply each of these equations by one of the composite 

eigenfunctions and integrate over x,y cross-section
• Gives two equations relating Anm and Bnm for the same nm.
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Separation of Variables: Source Results

• The delta function source makes the source 
integral and expansion trivial
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Separation of Variables: Final Result

• Solve for Anm and Bnm and plug in
• Both proportional to σnm

• Also involve ratios of sinh and cosh
• See 3.168 pp 129
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