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EE243 Advanced Electromagnetic Theory

Lec # 8: Magnetostatics

• Basic Observations of Magnetic Fields and Forces
• Vector Potential
• Magnetic Moment Density (magnetization)
• Force, Torque, Energy
• Macroscopic Equations and Boundary Conditions
• Applications

Reading: Jackson Ch 5
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Overview
• Since there are no magnetic charges, one 

might think Magnetostatics would be easier.
• But no magnetic charges has the opposite 

effect of greatly complicating the physics 
and the math.
– Start with dipole (higher order) effects
– Now think in terms of fields that circle rather 

than diverge (lots of cross products)
– The potential which for electrostatics was a 

scalar with a clear physical interpretation 
becomes a multi-component vector without an 
intuitive interpretation 

Copyright 2006 Regents of University of California
3

EE 210 Applied EM Fall 2006, Neureuther Lecture #08 Ver 09/17/06

Basic Observations

• Statics means charge 
does not change with 
time => div J = 0

• Measure torque
• Biot and Savart Law 

(1820)
• Generalize for charge 

in motion
• Force on current 

element
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Basic Observations
• B field from a long 

wire at distance R
• Force on a closed 

current loop due to 
another closed 
current loop

• Force on parallel 
wires repel if 
opposite direction

• Force on a current 
distribution

• Torque on a current 
distribution
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Differential Form of  Magnetostatics

• Start from current 
element and integrate

• Get curl integral 
• Implies div B = 0
• Go back to integral and 

take curl
• Curl B = µ0J
• Ampere’s Law for loop 

of B field = µ0 current
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Auxiliary Mathematical Potential now Vector

• Div B = 0 allows B 
to be represented 
by curl A

• Previous slide 
shows an A

• But arbitrary grad 
ψ can be added

• Choose Div A =0 
Coulomb Gauge
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Vector Potential Example: Circular Loop
• Current I on circular 

loop of radius a
• Integrate J to get A 

– => Aφ only
• Apply curl to get B
• Look at far fields

– Dipole in nature
– Magnitude m = πa2I = 

area times I
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Force, Torque and Potential Energy

• Force
– Example: Magnetic 

Mirror
• Potential

• Torque
– Example: Motors
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Material Model

• Circular currents due to 
charge particles orbiting 
nucleus
– Sum over particles
– Related to angular 

momentum
– Also quantum effects
– Local magnetization
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Microscopic to Macroscopic

• Average of div B = 0 
scales

• Vector potential A has 
magnetization 
contributions (dipole like)

• Magnetization contributes 
an effective current 
density

• Introduce new 
macroscopic magnetic 
field

• Curl H = J
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Boundary Conditions

• Derived from div B = 0 and curl H = J
• Very large values of permeability occur in which 

case 
– H is nearly normal to the surface where the B field 

emerges from the material
– H is very small inside the material

Example: electromagnet with N turn coil; Integral of H in loop =
NI; and H times gap ~ NI
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Boundary Value Problem Techniques

• Choice of convenient Auxiliary function to represent 
B

• Vector Potential A and B = Curl A
– Integrate the vector current with 1/distance to get vector A; 

take curl to get B; divide µ to get B; apply boundary 
conditions

• Magnetic Scalar Potential Φ and H =- Grad Φ
– Special case of no local currents to integrate
– Curl H =0 => H =- Grad Φ
– Choose potential; Grad to get H, multiply µ to get B; apply 

boundary conditions
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Example BVP in Magnetostatics

• Uniformly magnetized sphere
– m = volume times M

• Magnetized sphere in and external field
– Analogous to electrostatics
– Internal Magnetization

• Magnetic Shielding
– High µ material attracts nearly all field lines

• Hole in a conducting plane in uniform magnetic 
field
– Dipole in direction of field 
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Faraday’s Law of Induction

• Flux through surface
• Electro Motive 

Force that opposes is 
proportion to rate of 
change

• Include velocity of 
moving loop

• Differential form
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Energy in Magnetic Fields

• Power = VI
• Small loop
• A and J in space
• B and H in space 

(most physical)
• Force is gradient 

of W at constant 
current

∫
∫

∫

⋅=

⋅=

⋅∆=

=

=−=

xdHBW

xdJAW

xdBnJW

FIW
Dt
dFIIEmf

dt
dW

3

3

3ˆ

δδ

δδ

δσδ

δδ

( )JWF

xdBMW

xdAJW

xdBHW

FIW

∇=

⋅=

⋅=

⋅=

∆=

∫

∫

∫

3

3

3

2
1
2
1
2
1
2
1

Copyright 2006 Regents of University of California
16

EE 210 Applied EM Fall 2006, Neureuther Lecture #08 Ver 09/17/06

Self- and Mutual Inductances
• Define using 

analogy to 
capacitance

• Sort formula for 
energy into 
current loops

• When loop small 
compared to 
change in vector 
potential over it 
the flux linkage 
can be used
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