## EE243 Advanced Electromagnetic Theory

## Lec \# 11: Plane Electromagnetic Waves

- Plane Waves in a Nonconducting Medium
- Linear and Circular Polarization
- $k$-space view of waves in media
- Reflection and Refraction at Plane Interfaces
- Physical Phenomena Associated with Reflection


## Reading: Jackson Ch 7.1-7.5 (skip 7.6 and 7.7)

## Overview

- In a source free region for time-harmonic ( $\mathrm{e}^{-\mathrm{j} \omega \mathrm{t}}$ ) signals Maxwell's Equations can be reduced to two coupled curl equations.
- These two curl equations
- Combine to produce the wave equation for E or H
- The eigenfunctions for these wave equations are plane waves described by propagation direction vectors called k-vectors that have length $2 \pi / \lambda$ and result in wave velocity $c$.
- Have zero divergence and make the vectors E and H perpendicular to the direction of propagation.
- Make E and H vectors perpendicular to each other
- Are sufficient at material boundaries to
- require the components of the k-vector parallel to the surface to be the same on both sides of the boundary (Kinematic B.C.)
- Require tangential E and H continuous; normal D and B continuous at the boundary (Dynamic B.C.)


## Time-Harmonic Maxwell Equations

Time-Varying
Assume No Sources
$\nabla \cdot \bar{D}=\rho$
$\nabla \times \bar{H}=\bar{J}+\frac{\partial \bar{D}}{\partial t}$
$e^{-i \omega t}$
$\bar{J}=0$

$$
\nabla \cdot \bar{B}=0
$$

$$
\rho=0
$$

$$
\nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t}
$$

$$
\begin{aligned}
& \bar{D}=\varepsilon \bar{E} \\
& \bar{B}=\mu \bar{H}
\end{aligned}
$$

$\nabla \times \bar{E}-i \omega \bar{B}=0$
$\nabla \times \bar{B}+i \omega \mu \bar{E}=0$
Im plicit
$\nabla \cdot \bar{D}=\rho$
$\nabla \cdot \bar{B}=0$

## Wave Equation: Derivation

- Take curl of curl

$$
\nabla \times \bar{E}-i \omega \bar{B}=0
$$ E Eq.

$$
\nabla \times \nabla \times \bar{E}-i \omega \nabla \times \bar{B}=0
$$

$\nabla \times \nabla \times \bar{E}-i \omega \nabla \times \bar{B}=0$

- Sub: for curl curl
$\nabla(\nabla \cdot \bar{E}))-\nabla^{2} \bar{E}-i \omega(-i \omega \mu \bar{E})=0$
$0-\nabla^{2} \bar{E}-\omega^{2} \mu \varepsilon \bar{E}=0$
$\nabla^{2} \bar{E}+\omega^{2} \mu \varepsilon \bar{E}=0$
$\nabla^{2} \bar{B}+\omega^{2} \mu \varepsilon \bar{B}=0$
- Sub for curl B
- Use Div E = 0
- Similar Eq for B


## Wave Equation: Plane Wave Solution

$$
\begin{aligned}
& \nabla^{2} \bar{E}+\omega^{2} \mu \varepsilon \bar{E}=0 \\
& \bar{E}=\bar{E}_{0} e^{i \bar{k} \cdot \bar{x}} \\
& \nabla \rightarrow i \bar{k} \\
& \nabla \cdot \rightarrow i \bar{k} \\
& \nabla \times \rightarrow i \bar{k} \times \\
& \nabla^{2} \rightarrow-\bar{k}^{2} \\
& -\bar{k}^{2}+\omega^{2} \mu \varepsilon \bar{E}=0 \\
& |\bar{k}|=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c}=\frac{2 \pi}{\lambda}
\end{aligned}
$$

- Use 3D Fourier Expansion type eigenfunction where the vector k is the propagation vector called the k -vector
- Differential operators become algebraic operators
- Wave equation gives a constraint on the length of the k -vector
- The k-vector is reciprocal to the space variation wavelength


## Plane Wave: Vector Properties

$$
\begin{aligned}
& \bar{E}=\bar{E}_{0} e^{i \bar{k} \cdot \bar{x}} \\
& |\bar{k}|=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c}=\frac{2 \pi}{\lambda} \\
& \nabla \cdot \bar{E}=0 \rightarrow i \bar{k} \cdot \bar{E}=0 \\
& \nabla \cdot \bar{B}=0 \rightarrow i \bar{k} \cdot \bar{B}=0 \\
& \bar{B}=\frac{1}{i \omega} \nabla \times \bar{E} \rightarrow \bar{B}=\frac{1}{i \omega} i \bar{k} \times \bar{E} \\
& \rightarrow \bar{B}=\sqrt{\mu \varepsilon} \hat{k} \times \bar{E} \\
& \rightarrow \bar{H}=\frac{1}{\sqrt{\mu / \varepsilon}} \hat{k} \times \bar{E}=\frac{1}{Z_{0}} \hat{k} \times \bar{E} \\
& Z_{0}=\sqrt{\mu / \varepsilon}=377 \text { Ohms }
\end{aligned}
$$

- Start with a vector in 3D and variation 3D
- Div E = $0=>$ k perpendicular to E
- Div B = $0=>$ perpendicular to E
- Because E is perpendicular to k the fact that $\mathrm{B} \sim \mathrm{k}$ cross E then implies B is perpendicular to E
- That is all 3 ( $\mathrm{k}, \mathrm{B}, \mathrm{E}$ ) are perpendicular to each other and that there are no fields in the direction of propagation


## Inhomogeneous Plane Waves $|\mathrm{k}|^{2}>\omega^{2} \mu \varepsilon$

$$
\begin{aligned}
& \bar{E}=\bar{E}_{0} i^{i \bar{k} \cdot \bar{x}} \\
& \bar{k}=\bar{k}_{r}+i \bar{k}_{i} \\
& k_{0}=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c}=\frac{2 \pi}{\lambda} \\
& \bar{k} \cdot \bar{k}=k_{0}^{2} \\
& \operatorname{Re}(\bar{k} \cdot \bar{k})=\bar{k}_{r}^{2}-\bar{k}_{i}^{2}=k_{0}^{2} \\
& \operatorname{Im} y(\bar{k} \cdot \bar{k})=2 \bar{k}_{r} \cdot \bar{k}_{i}=0
\end{aligned}
$$

- The k-vector can be a vector with complex components and the imaginary part can describe exponential attenuation
- The wave equation requires the dot product with itself to
- have a real part $\omega^{2} \mu \varepsilon$
- have the imy part perpendicular to the real
- Thus the direction of

Evanescent waves that stay near or surface and explain phenomena such as tunneling maximum attenuation must be perpendicular to the direction of propagation across gaps.

## Plane-Wave: Poynting's Theorem

$$
\begin{aligned}
& S=\frac{1}{2}\left(\bar{E} \times \bar{H}^{*}\right)=\frac{1}{2} \sqrt{\frac{\mu}{\varepsilon}}\left|E_{0}\right|^{2} \\
& w_{e}=\frac{1}{4}\left(\bar{E} \cdot \bar{D}^{*}\right)=\frac{\varepsilon}{4}\left(\bar{E} \cdot E^{*}\right)=\frac{\varepsilon}{4}\left|E_{0}\right|^{2} \\
& w_{m}=\frac{1}{4}\left(\bar{B} \cdot \bar{H}^{*}\right)=\frac{1}{4 \mu}\left(\bar{B} \cdot \bar{B}^{*}\right)=\frac{\mu \varepsilon}{4 \mu}\left|E_{0}\right|^{2} \\
& u=\frac{1}{4}\left(\varepsilon \bar{E} \cdot E^{*}+\frac{1}{\mu}\left(\bar{B} \cdot \bar{B}^{*}\right)\right)=\frac{\varepsilon}{2}\left|E_{0}\right|^{2}
\end{aligned}
$$

- Plug in Vector E with complex numbers for components
- Poynting vector, stored energy is balanced


## Linear and Circular Polarization

- Choose propagation in z

$$
\begin{aligned}
& \bar{E}=\bar{E}_{0} e^{i \bar{k} \cdot \bar{x}} \\
& \bar{E}_{0}=E_{0 x} \hat{X}+E_{0 y} \hat{y}+E_{0 z} \hat{z}
\end{aligned}
$$ direction and let E have components in x and y directions

$$
\begin{aligned}
& |\bar{k}|=k_{0}=\omega \sqrt{\mu \varepsilon}=\frac{\omega}{c}=\frac{2 \pi}{\lambda} \\
& \bar{k}=k_{x} \hat{x}+k_{y} \hat{y}+k_{z} \hat{z}
\end{aligned}
$$

$$
\bar{E}_{0}=E_{0 x} \hat{x}+E_{0 y} \hat{y}
$$

$$
\bar{k}=k_{0} \hat{Z}
$$

$$
\left.\bar{E}_{0}=\left|E_{0 x}\right| \cos k_{0} z-w t+\phi_{x}\right) \hat{x}+\left|E_{0 y}\right| \cos \left(k_{0} z-w t+\phi_{y}\right) \hat{y}
$$

## Reflection and Refraction at a Plane Interface



- Wave incident from below at angle i
- Generates transmitted (refracted) wave at angle r',
- Also generates reflected wave at angle r’

Note: The $\mathrm{z}=0$ plane where the boundary conditions are applied is for all x values and all y values

## Plane Interface: Kinetic Boundary Conditions



- Since the $\mathrm{z}=0$ plane covers the range of the full Fourier representation each of the three waves must have the same eigenfunction variation along the boundary in x and y (i.e. the same $\mathrm{k}_{\mathrm{x}}$ and $\mathrm{k}_{\mathrm{y}}$ )

$$
\begin{aligned}
& (\bar{k} \cdot \bar{x})_{z=0}=\left(\bar{k}^{\prime} \cdot \bar{x}\right)_{z=0}=\left(\overline{k^{\prime}} \cdot \bar{x}\right)_{z=0} \\
& k_{x}=k_{x}^{\prime}=k_{x}^{\prime \prime} \mapsto k_{y}=k_{y}^{\prime}=k_{y}^{\prime \prime}
\end{aligned}
$$

Copyright 2006 Regents of University of California

## Plane Interface: Dynamic Boundary Conditions

- Wave $\mathrm{Eq}=2^{\text {nd }}$ order $=>2$ boundary conditions
- Two independent vector orientations => 4 boundary conditions toal
- Choose 4 from 6 possible and express in terms of E
- Normal D and B continuous (2)
- Tangential E and H continuous (4)

$$
\begin{aligned}
& {\left[\varepsilon\left(\left(\bar{E}_{0}+\bar{E}_{0}^{\prime \prime}\right)-\varepsilon^{\prime} \bar{E}_{0}^{\prime}\right)-\varepsilon^{\prime} \bar{E}_{0}^{\prime}\right] \cdot \hat{n}=0} \\
& {\left[\bar{k} \times \bar{E}_{0}+\bar{k}^{\prime \prime} \times \bar{E}_{0}^{\prime \prime}-\bar{k}^{\prime} \times \bar{E}_{0}^{\prime}\right] \cdot \hat{n}=0} \\
& \left(\bar{E}_{0}+\bar{E}_{0}^{\prime \prime}-\bar{E}_{0}^{\prime}\right) \times \hat{n}=0 \\
& {\left[\frac{1}{\mu}\left(\bar{k} \times \bar{E}_{0}+\bar{k}^{\prime \prime} \times \bar{E}^{\prime \prime}\right)_{0}-\frac{1}{\mu^{\prime}} \bar{k}^{\prime} \times \bar{E}_{0}^{\prime}\right] \times \hat{n}=0}
\end{aligned}
$$

## Plane Interfaçe: Solution



- Unknowns are the transmitted and reflected wave complex amplitudes in the plane of incidence and perpendicular to the plane of incident.
- These two vector orientations can be solved independently from each other
- See Jackson Page 305 for the detailed results


## Plane Interface: Physical Effects

- Refraction
- Wave direction change
- Total Internal Reflection
- Only Evanesent fields outside
- Tunneling accross a gap
- Brewster Angle
- 100\% transmission
- Polarization dependent phase change
- Converts linear to part circular polarization
- Beam spot shift (Goos-Hanchen effect)


## Physical Effects: Wave Direction Change

Propagation vector k-vector diagram


- Draw concentric circles of radius $\mathrm{k}_{\mathrm{air}}$ and $\mathrm{k}_{\text {med }}$
- Incident wave has k vector given (arrow $\mathrm{k}_{1}$ )
- Find the component parallel to the surface (dotted line)
- Force the k -vector in air $\mathrm{k}_{\text {air }}$ and k -vector reflected $\mathrm{k}_{\text {ref }}$ to have the same parallel component (lie on dotted line)
- Choose point on the circle to give these new k-vectors (arrows) the correct length for the wave equation in the media that they are in


## Plane Interface: Physical Effects




- Total Internal Reflection
- Parallel part of $\mathrm{k}_{\text {med }}>\mathrm{k}_{0}$
- Brewster Angle
- Polarization in plane of incidence reflection coefficient goes to zero giving 100\% transmission
- Polarization dependent reflection phase change
- Converts linear to part circular polarization
- Beam energy penetration $\delta$ and spot shift D (GoosHanchen effect)

