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EE243 Advanced Electromagnetic Theory

Lec # 13: Waveguides and sources

• Source Free Region: Vector Potentials A and F
• Single direction component of A and F 

• Give TM and TE
• Are Adequate

• Perfectly Electrically Conducting Guides
• Source Excitation via Reciprocity

Reading: Jackson Ch 8.2-8.4, 8.12
Harrington 3.2, 3.12
Collin 4.10
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Overview
• A very general TE/TM separation into two scalar 

problems is first developed as a working tool.
• This TE/TM separation with respect to the z 

(propagation) direction is applied to perfectly 
electrically conducting waveguides.

• The waveguide modes, phase and group velocities 
are then derived.

• General representations for fields in waveguides 
are then developed.

• Reciprocity is then used to determine the 
excitation of a given waveguide mode.  
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Overview: TE/TM Separation
• In a homogeneous source free region, it is 

adequate in general to independently solve for 
TWO SCALAR FUNCTIONS instead of 6 
components simultaneously (3 components of E 
and 3 components of B).

• These scalar functions are the components of the 
vector potentials A and F in a common direction. 

• Under the Lorenz Gauge these scalar functions 
satisfy the wave equation and their boundary 
conditions generally differ.

• The scalar component of A gives fields that are 
transverse magnetic and the scalar component of F 
gives the fields that are transverse magnetic (both 
with respect to the common direction).
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Magnetic/Electric Duality

• Dual equations for problems in which only 
an electric source J or only a magnetic 
source M are present.
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Simultaneous Electric and Magnetic 
Sources

• Superimpose contributions for the two source types.
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Source Free Region

• Representation is still valid 
in a source free regions (A 
and F are viewed as being 
produced by sources 
outside of the region).
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• With the Lorenz gauge A and F satisfy the wave equation 
and the fields are give by
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Only Electric Potential in z Direction

• This contribution is 
transverse magnetic (TM) 
to the z direction

0

1

1

1

ˆ

2
2

2

2

2

=
∂
∂

−=

∂
∂

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

−
=

∂∂
∂

−
=

∂∂
∂

−
=

=

z

y

x

z

y

x

H
x

H

y
H

k
zi

E

zyi
E

zxi
E

zA

ψ

ψ

ψ
ωε

ψ
ωε

ψ
ωε

ψ



Copyright 2006 Regents of University of California
8

EE 210 Applied EM Fall 2006, Neureuther Lecture #13 Ver 10/08/06

Only Magnetic Potential in z Direction

• This contribution is 
transverse electric (TE) to 
the z direction
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Total Solution
• The addition of the TM and TE solutions is 

sufficient to express any arbitrary field in a source 
free region.

• Further, the choice of the direction about which to 
make the TE/TM can be any direction.
– In empty waveguides and on dielectric slabs the TE/TM 

separation is often the direction of propagation.
– An exception is a partially filled waveguide where the 

separation directions is perpendicular to the dielectric 
filling.

• The scalar function describing the TE and TM 
solutions typically have different boundary 
conditions
– Perfect electric conductor
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ME for Uniform Guided Waves

• Guided waves have a uniform longitudinal phase 
variation eikz

• Factor the differential operators into transverse 
operators and longitudinal algebraic multipliers.
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ME for Uniform Guided Waves (Cont.)

• E and B satisfy wave equation with transverse 
operator and –k2

• Break up E and B into longitudinal and transverse
• Transverse fields can be found from Ez and Bz.
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TEM Degeneracy

• Occurs when both Ez and Bz are zero
• TEM Solution

– Bz = 0 makes Curlt ETEM =0
– Ez = 0 makes Divt ETEM =0
– ETEM is a solution to an electrostatic problem in 2D.

• Consequences
– Propagates with k of plane wave in free space
– BTEM and ETEM are related as in plane wave in free 

space
– Can only exist with more than one conductor
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Boundary Conditions

• For a perfect electric conductor there are no 
fields inside and Etan is continuous

• For a perfect electric conductor B is zero 
inside and Bnormal is continuous
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Waveguide Simplifications
• First find Ez and Bz
• Then use gradient to find 

the associated transverse B 
or E

• Use impedance to find the 
associated transverse E and 
B

• Potentially there are 5 
terms each for TE and TM 
but often there are only 3 
terms each for the TE and 
TM
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Generic Wave Properties

• The solution for the scalar function Ez or 
Bz introduces eigenvalues

• Phase propagation in the z direction only 
occurs once µεω2 exceeds the eigenvalue.
– Cutoff frequency
– Phase velocity
– Group velocity

• Modes that are cutooff are said to be 
evanescent due to their exponential decay
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Rectangular Waveguide Example (TM)
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Rectangular Waveguide Orthonormal Modes

• The TE and TM modes are orthogonal to 
each other in any combination

• The TE and TM modes are orthogonal 
amongst them selves

• The can be normalized as has been don in 
Jackson 8.12
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Representation of an Arbitrary Field

• The most general field in a source free 
region is a summation of TE and TM modes 

• If the source is to the left then only fields 
propagating to the right need to be included

• FYI: Each mode by itself can be written as a 
sum of 4 planewaves
– expand the sinusoidal behavior in x and y as 

exponentials 
– Compute the k-vector wave directions
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Fields Generated by a Localized Source

To find amplitude of a given mode propagating to 
the right

• General expansion for modes to right
• Assume the given mode of arbitrary amplitude is 

propagating to left from outside the boundary
• Apply reciprocity to the volume for these two sets 

of fields
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Fields Generated by a Localized Source (Cont.)

Apply reciprocity to the volume for these two sets of fields
• Integral over wall is zero
• Integral over left cut-plane is zero as all modes going same direction
• Integral over right cut plane is proportional to outgoing mode 

amplitude times incoming mode amplitude
• Intergral over the source measures the component of the source with 

the x,y eigenfunction variation as well as phase coherence with z and 
is proportional to incoming mode amplitude

• Ratio cancels incoming amplitude and gives outgoing amplitude.
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