EE243 Advanced Electromagnetic Theory

Lec \# 13: Waveguides and sources

- Source Free Region: Vector Potentials A and F
- Single direction component of A and F
- Give TM and TE
- Are Adequate
- Perfectly Electrically Conducting Guides
- Source Excitation via Reciprocity

Reading: Jackson Ch 8.2-8.4, 8.12 Harrington 3.2, 3.12
Collin 4.10

Overview

- A very general TE/TM separation into two scalar problems is first developed as a working tool.
- This TE/TM separation with respect to the z (propagation) direction is applied to perfectly electrically conducting waveguides.
- The waveguide modes, phase and group velocities are then derived.
- General representations for fields in waveguides are then developed.
- Reciprocity is then used to determine the excitation of a given waveguide mode.

Overview: TE/TM Separation

- In a homogeneous source free region, it is adequate in general to independently solve for TWO SCALAR FUNCTIONS instead of 6 components simultaneously (3 components of E and 3 components of B).
- These scalar functions are the components of the vector potentials A and F in a common direction.
- Under the Lorenz Gauge these scalar functions satisfy the wave equation and their boundary conditions generally differ.
- The scalar component of A gives fields that are transverse magnetic and the scalar component of F gives the fields that are transverse magnetic (both with respect to the common direction).

Magnetic/Electric Duality

Harrington 3.2

Electric Sources

\[

\]

- Dual equations for problems in which only an electric source J or only a magnetic source M are present.

Simultaneous Electric and Magnetic Sources

$$
\begin{aligned}
\bar{E} & =-\nabla \times \bar{F}+\frac{1}{i \omega \varepsilon}(\nabla \times \nabla \times \bar{A}-\bar{J}) \\
\bar{H} & =\nabla \times \bar{A}+\frac{1}{i \omega \mu}(\nabla \times \nabla \times \bar{F}-\bar{M}) \\
\overline{\mathrm{A}} & =\frac{1}{4 \pi} \int_{V} \frac{\overline{J e} e^{i k\left|\bar{x}-\bar{x}^{\prime}\right|}}{\left|\bar{x}-\bar{x}^{\prime}\right|} d^{3} x^{\prime} \\
\overline{\mathrm{F}} & =\frac{1}{4 \pi} \int_{V} \frac{\overline{M e^{i k\left|\bar{x}-\bar{x}^{\prime}\right|}}}{\left|\bar{x}-\bar{x}^{\prime}\right|} d^{3} x^{\prime}
\end{aligned}
$$

- Superimpose contributions for the two source types.

Source Free Region

Harrington 3.12

$$
\begin{array}{ll}
\bar{E}=-\nabla \times \bar{F}+\frac{1}{i \omega \varepsilon}(\nabla \times \nabla \times \bar{A}) & \begin{array}{l}
\text { Representation is still valid } \\
\text { in a source free regions (A } \\
\text { and F are viewed as being }
\end{array} \\
\bar{H}=\nabla \times \bar{A}+\frac{1}{i \omega \mu}(\nabla \times \nabla \times \bar{F}) \quad & \begin{array}{l}
\text { produced by sources } \\
\text { outside of the region). }
\end{array}
\end{array}
$$

- With the Lorenz gauge A and F satisfy the wave equation and the fields are give by

$$
\begin{array}{ll}
\nabla^{2} \bar{A}+k^{2} \bar{A}=0 & \bar{E}=-\nabla \times \bar{F}+i \omega \mu \bar{A}+\frac{1}{i \omega \varepsilon} \nabla(\nabla \cdot \bar{A}) \\
\nabla^{2} \bar{F}+k^{2} \bar{F}=0 & \bar{H}=\nabla \times \bar{A}+i \omega \bar{F}+\frac{1}{i \omega \mu} \nabla(\nabla \cdot \bar{F})
\end{array}
$$

Only Electric Potential in z Direction

$$
\bar{A}=\psi \hat{Z}
$$

$$
E_{x}=\frac{1}{-i \omega \varepsilon} \frac{\partial^{2} \psi}{\partial x \partial z}
$$

$$
E_{y}=\frac{1}{-i \omega \varepsilon} \frac{\partial^{2} \psi}{\partial y \partial z}
$$

- This contribution is transverse magnetic (TM) to the z direction

$$
E_{z}=\frac{1}{-i \omega \varepsilon}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \psi
$$

$$
H_{x}=\frac{\partial \psi}{\partial y}
$$

$$
H_{y}=-\frac{\partial \psi}{\partial x}
$$

$$
H_{z}=0
$$

Only Magnetic Potential in z Direction

$$
\begin{aligned}
& \bar{F}=\psi \hat{z} \\
& E_{x}=-\frac{\partial \psi}{\partial y} \\
& E_{y}=\frac{\partial \psi}{\partial x}
\end{aligned}
$$

- This contribution is transverse electric (TE) to the z direction

$$
E_{z}=0
$$

$$
H_{x}=\frac{1}{-i \omega \mu} \frac{\partial^{2} \psi}{\partial x \partial z}
$$

$$
H_{y}=\frac{1}{-i \omega \mu} \frac{\partial^{2} \psi}{\partial y \partial z}
$$

$$
H_{z}=\frac{1}{-i \omega \mu}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \psi
$$

Total Solution

- The addition of the TM and TE solutions is sufficient to express any arbitrary field in a source free region.
- Further, the choice of the direction about which to make the TE/TM can be any direction.
- In empty waveguides and on dielectric slabs the TE/TM separation is often the direction of propagation.
- An exception is a partially filled waveguide where the separation directions is perpendicular to the dielectric filling.
- The scalar function describing the TE and TM solutions typically have different boundary conditions
- Perfect electric conductor

$$
\begin{aligned}
& \left.E_{Z}\right|_{S}=0 \\
& \left.\frac{\partial B_{z}}{\partial n}\right|_{S}=0
\end{aligned}
$$

ME for Uniform Guided Waves

$$
\begin{aligned}
& \nabla \phi=\frac{\partial \phi}{\partial x} \hat{x}+\frac{\partial \phi}{\partial y} \hat{y}+i k_{z} \phi \hat{z} \\
& \nabla \cdot \bar{V}=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+i k_{z} V_{z} \\
& \nabla \times \bar{V}=\left(\frac{\partial V_{z}}{\partial y}-i k_{z} V_{y}\right) \hat{x}+\left(i k_{z} V_{x}-\frac{\partial V_{z}}{\partial x}\right) \hat{y}+\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) \hat{z} \\
& \nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}-k^{2} \phi=\left(\nabla_{t}^{2}-k^{2}\right) \phi
\end{aligned}
$$

- Guided waves have a uniform longitudinal phase variation e ${ }^{\text {ikz }}$
- Factor the differential operators into transverse operators and longitudinal algebraic multipliers.

ME for Uniform Guided Waves (Cont.)

$$
\begin{aligned}
& {\left[\nabla_{t}^{2}+\left(\mu \varepsilon \omega^{2}-k^{2}\right)\right] \bar{E}=0 \quad \text { Jackson } 8.2} \\
& \bar{E}^{2}=E_{z} \hat{z}+\bar{E}_{t} \\
& \bar{E}_{t}=\frac{1}{\left(\mu \varepsilon \omega^{2}-k^{2}\right)}\left[k \nabla_{t} E_{z}-\omega \hat{z} \times \nabla_{t} B_{z}\right] \\
& \bar{B}_{t}=\frac{1}{\left(\mu \varepsilon \omega^{2}-k^{2}\right)}\left[k \nabla_{t} B_{z}+\mu \varepsilon \omega \hat{z} \times \nabla_{t} E_{z}\right]
\end{aligned}
$$

- E and B satisfy wave equation with transverse operator and $-\mathrm{k}^{2}$
- Break up E and B into longitudinal and transverse
- Transverse fields can be found from E_{z} and B_{z}.

TEM Degeneracy

- Occurs when both Ez and Bz are zero
- TEM Solution
$-\mathrm{Bz}=0$ makes Curl $\mathrm{E}_{\mathrm{tEM}}=0$
$-\mathrm{Ez}=0$ makes $\mathrm{Div}_{\mathrm{t}} \mathrm{E}_{\text {TEM }}=0$
$-\mathrm{E}_{\text {TEM }}$ is a solution to an electrostatic problem in 2D.
- Consequences
- Propagates with k of plane wave in free space
- $\mathrm{B}_{\text {TEM }}$ and $\mathrm{E}_{\text {TEM }}$ are related as in plane wave in free space
- Can only exist with more than one conductor

Boundary Conditions

$$
\begin{aligned}
& n \times E=0 \\
& \left.\Rightarrow E_{z}\right|_{S}=0 \\
& n \cdot B=0 \\
& \left.\Rightarrow \frac{B_{z}}{\partial n}\right|_{S}=0
\end{aligned}
$$

- For a perfect electric conductor there are no fields inside and $\mathrm{E}_{\mathrm{tan}}$ is continuous
- For a perfect electric conductor B is zero inside and $\mathrm{B}_{\text {normal }}$ is continuous

Waveguide Simplifications

$$
\bar{H}_{t}=\frac{ \pm 1}{Z} \hat{z} \times \bar{E}_{t}
$$

$$
Z_{T M}=\frac{k}{\omega \varepsilon}=\frac{k}{k_{0}} \sqrt{\frac{\mu}{\varepsilon}}
$$

$$
Z_{T E}=\frac{\mu \omega}{k}=\frac{k_{0}}{k} \sqrt{\frac{\mu}{\varepsilon}}
$$

$$
\gamma^{2}=\mu \varepsilon \omega^{2}-k^{2}
$$

$$
\bar{E}_{t}= \pm \frac{i k}{\gamma} \nabla_{t} \bar{E}_{2}
$$

$$
\bar{B}_{t}= \pm \frac{i k}{\gamma^{2}} \nabla_{t} \bar{B}_{z}
$$

- First find Ez and Bz
- Then use gradient to find the associated transverse B or E
- Use impedance to find the associated transverse E and B
- Potentially there are 5 terms each for TE and TM but often there are only 3 terms each for the TE and TM

Generic Wave Properties

- The solution for the scalar function Ez or Bz introduces eigenvalues
- Phase propagation in the z direction only occurs once $\mu \varepsilon \omega^{2}$ exceeds the eigenvalue.
- Cutoff frequency
- Phase velocity
- Group velocity
- Modes that are cutooff are said to be evanescent due to their exponential decay

Rectangular Waveguide Example (TM)

$$
\begin{aligned}
& \psi=E_{z} \\
& \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\gamma^{2}\right) \psi=0 \\
& \left.\psi\right|_{S}=0 \\
& \bar{E}_{t}= \pm \frac{i k}{\gamma^{2}} \nabla_{t} \psi \\
& \bar{H}_{t}=\frac{ \pm 1}{Z} \hat{z} \times \bar{E}_{t} \\
& Z_{\text {TM }}=\frac{k}{\omega \varepsilon}=\frac{k}{k_{0}} \sqrt{\frac{\mu}{\varepsilon}} \\
& E_{x}=E_{0} \frac{i k \pi}{\gamma_{m n}{ }^{2} a} \cos () \sin () \\
& E_{y}=E_{0} \frac{i k \pi}{\gamma_{m n}^{2} b} \sin () \cos () \\
& H_{x}=-E_{0} \frac{i k \pi}{Z_{T M} \gamma_{m n}{ }^{2} b} \sin () \cos () \\
& H_{y}=E_{0} \frac{i k \pi}{Z_{\text {TM }} \gamma_{m n}{ }^{2} a} \cos () \sin () \\
& \text { Copyright } 2006 \text { Regents of University of California }
\end{aligned}
$$

Rectangular Waveguide Orthonormal Modes

- The TE and TM modes are orthogonal to each other in any combination
- The TE and TM modes are orthogonal amongst them selves
- The can be normalized as has been don in Jackson 8.12

Representation of an Arbitrary Field

- The most general field in a source free region is a summation of TE and TM modes
- If the source is to the left then only fields propagating to the right need to be included
- FYI: Each mode by itself can be written as a sum of 4 planewaves
- expand the sinusoidal behavior in x and y as exponentials
- Compute the k-vector wave directions

Fields Generated by a Localized Source

To find amplitude of a given mode propagating to the right

- General expansion for modes to right
- Assume the given mode of arbitrary amplitude is propagating to left from outside the boundary
- Apply reciprocity to the volume for these two sets of fields

Fields Generated by a Localized Source (Cont.)

Apply reciprocity to the volume for these two sets of fields

- Integral over wall is zero
- Integral over left cut-plane is zero as all modes going same direction
- Integral over right cut plane is proportional to outgoing mode amplitude times incoming mode amplitude
- Intergral over the source measures the component of the source with the x, y eigenfunction variation as well as phase coherence with z and is proportional to incoming mode amplitude
- Ratio cancels incoming amplitude and gives outgoing amplitude.

