EE243 Advanced Electromagnetic Theory

Lec \# 14: Sources in Guides

- Solution Strategies
- Perfectly Electrically Conducting Guides
- Source Excitation via Reciprocity
- Plasmon fields and propagation constant

Reading: Jackson 8.12

Plasmons now in Lecture 15

Overview

- Review construction of solutions
- A component of A and F may be easier than Ez or Hz , but there is a little extra work to get Ez and Hz
- Reciprocity is useful for determining the excitation of a given waveguide mode.
- Waves on a single dielectric surface
- Fields
- Boundary conditions
- Constraint
- Plasmons for metals with $\varepsilon_{2}<-\varepsilon_{1}$

Source Free Region

Harrington Strategy 3.12

$$
\begin{array}{ll}
\nabla^{2} \bar{A}+k^{2} \bar{A}=0 & \bar{E}=-\nabla \times \bar{F}+i \omega \mu \bar{A}+\frac{1}{i \omega \varepsilon} \nabla(\nabla \cdot \bar{A}) \\
\nabla^{2} \bar{F}+k^{2} \bar{F}=0 & \bar{H}=\nabla \times \bar{A}+i \omega \bar{F}+\frac{1}{i \omega \mu} \nabla(\nabla \cdot \bar{F})
\end{array}
$$

- With the Lorenz gauge A and F satisfy the wave equation and the fields are give by above equations.
- Choosing the vectors A and B to only be in the z direction is adequate.
- Each potentially contributes 5 components of the E,H combination.

Only Electric Potential in z Direction

$$
\begin{aligned}
& \bar{A}=\psi \hat{z} \\
& E_{x}=\frac{1}{-i \omega \varepsilon} \frac{\partial^{2} \psi}{\partial x \partial z} \\
& E_{y}=\frac{1}{-i \omega \varepsilon} \frac{\partial^{2} \psi}{\partial y \partial z} \\
& E_{z}=\frac{1}{-i \omega \varepsilon}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \psi \\
& H_{x}=\frac{\partial \psi}{\partial y} \\
& H_{y}=-\frac{\partial \psi}{\partial x} \\
& H_{z}=0
\end{aligned}
$$

$$
\begin{aligned}
& \bar{F}=\psi \hat{z} \\
& E_{x}=-\frac{\partial \psi}{\partial y} \\
& E_{y}=\frac{\partial \psi}{\partial x} \\
& E_{z}=0 \\
& H_{x}=\frac{1}{-i \omega \mu} \frac{\partial^{2} \psi}{\partial x \partial z} \\
& H_{y}=\frac{1}{-i \omega \mu} \frac{\partial^{2} \psi}{\partial y \partial z} \\
& H_{z}=\frac{1}{-i \omega \mu}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \psi
\end{aligned}
$$

$$
\begin{aligned}
& \text { Jackson Strategy Eq. } 8.26 \\
& {\left[\nabla_{t}^{2}+\left(\mu \varepsilon \omega^{2}-k^{2}\right)\right] \bar{E}=0 \quad \text { Jackson } 8.2} \\
& \bar{E}=E_{z} \hat{z}+\bar{E}_{t} \\
& \bar{E}_{t}=\frac{1}{\left(\mu \varepsilon \omega^{2}-k^{2}\right)}\left[k \nabla_{t} E_{z}-\omega \hat{z} \times \nabla_{t} B_{z}\right] \\
& \bar{B}_{t}=\frac{1}{\left(\mu \varepsilon \omega^{2}-k^{2}\right)}\left[k \nabla_{t} B_{z}+\mu \varepsilon \omega \hat{z} \times \nabla_{t} E_{z}\right]
\end{aligned}
$$

- E and B satisfy wave equation with transverse operator and $-\mathrm{k}^{2}$
- Break up E and B into longitudinal and transverse
- Transverse fields can be found from E_{z} and B_{z}.

Comparison of Harrington and Jackson

- In a homogeneous source free region, it is adequate in general to independently solve for TWO SCALAR FUNCTIONS but which is easier
- z components of vector potentials A for TM and F for TE, or
- Ez and Hz themselves?
- The vector potential A (or F) in one direction is advantageous in finding the transverse components of H (or E)
- Pair of zeros in taking the curl => easier to determine the boundary condition
- Only propagating known information forward
- But Ez (or Hz) requires mult. $(1 / j \omega \varepsilon)\left(\omega^{2} \mu \varepsilon-\mathrm{k}_{\mathrm{z}}{ }^{2}\right)$
- To be fair Jackson though, Eq. 8.26 only propagates known information forward once Ez and Hz are known
- Ey could have been found from z cross grad Bz to get boundary condition that normal derivative of Bz must be zero for TE case.

Waveguide Simplifications (Revised)

$$
\begin{aligned}
& \bar{E}_{t}= \pm \frac{i k}{\gamma^{2}} \nabla_{t} \bar{E}_{z} \\
& \bar{B}_{t}= \pm \frac{i k}{\gamma^{2}} \nabla_{t} \bar{B}_{z} \\
& \gamma^{2}=\mu \varepsilon \omega^{2}-k^{2} \\
& \bar{H}_{t}=\frac{ \pm 1}{Z} \hat{z} \times \bar{E}_{t} \\
& Z_{T M}=\frac{k}{\omega \varepsilon}=\frac{k}{k_{0}} \sqrt{\frac{\mu}{\varepsilon}} \\
& Z_{T E}=\frac{\mu \omega}{k}=\frac{k_{0}}{k} \sqrt{\frac{\mu}{\varepsilon}}
\end{aligned}
$$

- Set Boundary Condition
- If TE Ez $=0$ on p.e.c. sidewall.
- If TM use 8.26 to get normal derivative of $\mathrm{Bz}=0$
- Solve for Ez and/or Bz
- Then use gradient to find the associated transverse B or E
- Use impedance to find the associated transverse E and B (or use 8.26)

Rectangular Waveguide Example (TM)

$$
\begin{aligned}
& \psi=E_{z} \\
& \left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\gamma^{2}\right) \psi=0 \\
& \left.\psi\right|_{S}=0 \\
& \bar{E}_{t}= \pm \frac{i k}{\gamma^{2}} \nabla_{t} \psi \\
& \bar{H}_{t}=\frac{ \pm 1}{Z} \hat{z} \times \bar{E}_{t} \\
& Z_{\text {TM }}=\frac{k}{\omega \varepsilon}=\frac{k}{k_{0}} \sqrt{\frac{\mu}{\varepsilon}} \\
& E_{x}=E_{0} \frac{i k \pi}{\gamma_{m n}{ }^{2} a} \cos () \sin () \\
& E_{y}=E_{0} \frac{i k \pi}{\gamma_{m n}{ }^{2} b} \sin () \cos () \\
& H_{x}=-E_{0} \frac{i k \pi}{Z_{T M} \gamma_{m n}{ }^{2} b} \sin () \cos () \\
& H_{y}=E_{0} \frac{i k \pi}{Z_{\text {TM }} \gamma_{m n}{ }^{2} a} \cos () \sin () \\
& \text { Copyright } 2006 \text { Regents of University of California }
\end{aligned}
$$

Generic Wave Properties

- The solution for the scalar function Ez or Bz introduces eigenvalues
- Phase propagation in the z direction only occurs once $\mu \varepsilon \omega^{2}$ exceeds the eigenvalue.
- Cutoff frequency
- Phase velocity
- Group velocity
- Modes that are cutoff are said to be evanescent due to their exponential decay

Rectangular Waveguide Orthonormal Modes

- The TE and TM modes are orthogonal to each other in any combination
- The TE and TM modes are orthogonal amongst them selves
- The waves can be normalized as has been done in Jackson 8.12
- The most general field in a source free region is a summation of TE and TM modes

Fields Generated by a Localized Source

To find amplitude of a given mode propagating to the right

- General expansion for modes to right
- Assume the given mode of arbitrary amplitude is propagating to left from outside the boundary
- Apply reciprocity to the volume for these two sets of fields

Fields Generated by a Localized Source (Cont.)

Apply reciprocity to the volume for these two sets of fields

- Integral over wall is zero
- Integral over left cut-plane is zero as all modes going same direction
- Integral over right cut plane is proportional to outgoing mode amplitude times incoming mode amplitude
- Intergral over the source measures the component of the source with the x, y eigenfunction variation as well as phase coherence with z and is proportional to incoming mode amplitude
- Ratio cancels incoming amplitude and gives outgoing amplitude.

Representation of Fields in Guide

- Localized source J creates
waves

$$
\begin{aligned}
& \bar{E}^{+}=\sum_{\lambda} A_{\lambda}^{+}\left[\bar{E}_{t \lambda}(x, y)+\bar{E}_{z \lambda}(x, y)\right] e^{-k_{k} z} \\
& \bar{H}^{+}=\sum_{\lambda} A_{\lambda}^{+}\left[\bar{H}_{u \lambda}(x, y)+\bar{H}_{2 \lambda}(x, y)\right] e^{-k_{k}, z} \\
& \bar{E}^{-}=\sum_{\lambda} A_{\lambda}^{-}\left[\bar{E}_{\lambda \lambda}(x, y)-\bar{E}_{z \lambda}(x, y) e^{+k_{k},}\right. \\
& \bar{H}^{-}=\sum_{\lambda} A_{\lambda}^{-}\left[-\bar{H}_{t \lambda}(x, y)+\bar{H}_{2 \lambda}(x, y)\right] e^{+k_{k \lambda} z} \\
& \bar{E}_{\text {trst }}^{-}=C_{\lambda}^{-}\left[\bar{E}_{t z}(x, y)-\bar{E}_{z \lambda}(x, y)\right] e^{+k_{k}, z} \\
& \bar{H}_{\text {rusr }}^{-}=C_{\lambda}^{-}\left[-\bar{H}_{u \lambda}(x, y)+\bar{H}_{z \lambda}(x, y)\right] e^{+k_{i, z}}
\end{aligned}
$$

- Index λ goes over TE, TM, m, n
- To right of source only waves to +z and sum over all TE and TM modes that propagate
- To left of source only waves to -z and sum over all TE and TM waves
- To left fields have signs altered $\operatorname{div} \mathrm{E}=\operatorname{div} \mathrm{H}=0$
- Test wave from outside going to left across volume

Apply Reciprocity Formulation

$$
\begin{aligned}
& \nabla \cdot\left(\bar{E}_{\text {TEST }} \times \bar{H}_{\lambda}^{ \pm}-\bar{E}_{\lambda}^{ \pm} \times H_{\text {TEST }}\right)=\bar{J} \cdot \bar{E}_{\text {TEST }} \\
& \int_{S}\left(\bar{E}_{\text {TEST }} \times \bar{H}_{\lambda}^{ \pm}-\bar{E}_{\lambda}^{ \pm} \times H_{\text {TEST }}\right) \cdot \hat{n} d a=\int_{V} \bar{J} \cdot \bar{E}_{\text {TEST }} d^{3} x
\end{aligned}
$$

- Source J produces the modes leaving the localized source region with amplitudes A_{λ}
- Source free TEST wave enters the volume and takes a measure of E
- Take Poynting Theorem like interaction

Evaluating Terms on Surfaces

$$
\begin{aligned}
\left(\bar{E}_{\text {TEST }} \times\right. & \left.\bar{H}_{\lambda}^{ \pm}-\bar{E}_{\lambda}^{ \pm} \times H_{T E S T}\right) \cdot \hat{n} \\
& \left(C \bar{E}_{\tau}^{-} \times A_{\tau} \bar{H}_{\tau}^{-}-A_{\tau} \bar{E}_{\tau}^{-} \times C H_{\tau}^{-}\right) \cdot(-\hat{z})=0 \\
& \left(C \bar{E}_{\tau}^{-} \times A_{\tau} \bar{H}_{\tau}^{+}-A_{\tau} \bar{E}_{\tau}^{+} \times C H_{\tau}^{-}\right) \cdot \hat{z} \\
& =\left(C \bar{E}_{\tau}^{+} \times A_{\tau} \bar{H}_{\tau}^{+}-A_{\tau} \bar{E}_{\tau}^{+} \times\left(-C H_{\tau}^{+}\right)\right) \cdot \hat{z} \\
& =2 C A_{\tau}\left(\bar{E}_{\tau}^{+} \times \bar{H}_{\tau}^{+}\right) \cdot \hat{z}=2 C A_{\tau} \text { Power }
\end{aligned}
$$

- Integral over p.e.c. is zero because E parallel to the surface is zero.
- Intergral over left plane
- Due to otrhogonality between TE and TM and within TE or TM this integral could only be non-zero for $\lambda=$ TEST $=\tau$.
- But for this term the two cross products are identical and cancel

Combining to find the mode amplitude

$$
\begin{aligned}
& \int_{S}\left(\bar{E}_{\text {TEST }} \times \bar{H}_{\lambda}^{ \pm}-\bar{E}_{\lambda}^{ \pm} \times H_{\text {TEST }}\right) \cdot \hat{n} d a=\int_{V} \bar{J} \cdot \bar{E}_{\text {TEST }} d^{3} x \\
& 2 C A_{\tau} \text { Power }=\int_{V} \bar{J} \cdot C \bar{E}_{\tau}^{-} d^{3} x \\
& A_{\tau}=\frac{1}{2 \text { Power }} \int_{V} \bar{J} \cdot \bar{E}_{\tau}^{-} d^{3} x
\end{aligned}
$$

- The amplitude of the test wave cancels
- The mode amplitude is half of the power normalized integral of the electric field of the inward traveling mode with the source current

Plasmons now in Lecture 15

