EE243 Advanced Electromagnetic Theory

Lec # 15 Plasmons

Fixed Slides 6, 12

- (Group and Phase Velocity for Guided Waves)
- (Sign Reversals for Propagation Direction Reversal)
- Plasmon Fields, B.C. and Dispersion Equation
- Physical Interpretation
- Typical Values for Silver
- ω - β diagram and fields at various points
- Assistance from topographical features

Reading: These PPT notes and Harrington on corrugated surface 4.8.

Midterm Exam

Review Th, Oct 19

- In Class Tuesday October 24th
- Covers material through today (Chapter 7)
- Open Book, Open Notes, Bring Calculator, Paper Provided
- Topics
 - Green's functions free space and use in Theorems and concepts with emphasis on statics
 - Separation of variables in rectangular coordinates using N-1 and N method
 - Time-Harmonic ME, planewaves, boundary conditions, and dispersion

Overview

- (First touch up
 - product of group and phase = c^2 for guided waves
 - Reverse direction reverse sign E_{z} and H_{t}).
- Surface Plasmons on metals
 - are TM guided waves
 - are made possible by free electrons oscillating in the propagating field just below their plasma frequency
 - this makes the permittivity both negative and larger in magnitude than the permittivity of air or a coating dielectric.
- Plasmons are described by Maxwell Equations
 - Their dispersion relationship is found by matching B.C.
 - They propagate a distance of up to $30 \ \mu m$
 - Near the plasma frequency their wavelength along the surface can be $5\bar{X}$ smaller that the free space wavelength
 - The can be used to form high resolution ($\lambda/6$) intensity probes but the probe height is roughly equal to the resolution and thus decreases. 3

Clarification on Phase and Group Velocity

С

$$\begin{split} \gamma^{2} &= \mu \varepsilon \omega^{2} - k^{2} \\ \omega &= \frac{1}{\sqrt{\mu \varepsilon}} \sqrt{\lambda^{2} + k^{2}} \\ v_{p} &= f\lambda = \frac{2\pi f}{\frac{2\pi}{\lambda}} = \frac{\omega}{k} = \frac{1}{\sqrt{\mu \varepsilon}} \sqrt{\frac{\lambda^{2}}{k^{2}} + 1} > c \\ v_{g} &= \frac{\partial \omega}{\partial k} = \frac{\frac{1}{2} (2k)}{\sqrt{\mu \varepsilon} \sqrt{\lambda^{2} + k^{2}}} = \frac{1}{\sqrt{\mu \varepsilon}} \frac{1}{\sqrt{\frac{\lambda^{2}}{k^{2}} + 1}} < v_{p} v_{g} = c^{2} \end{split}$$

• The fact that the product of the phase and group velocity is equal to the square of the speed of light holds for any (propagating) mode in a lossless sytemdue to its eigenfunction and eigenvalue γ^2 .

Sign Reversal with Direction Reversal

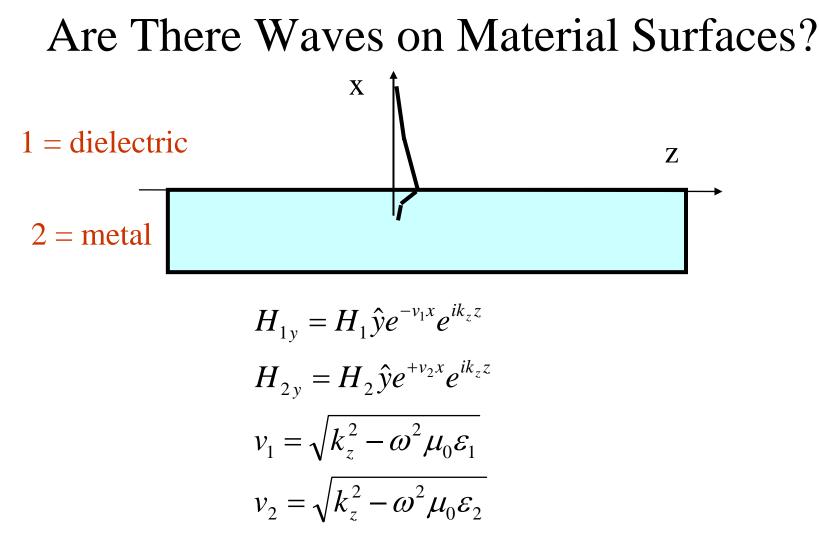
$$\nabla_{t} \times \overline{E}_{t\lambda} = i\omega\mu\overline{H}_{z\lambda}$$

$$\nabla_{t} \times \overline{H}_{t\lambda} = -i\omega\varepsilon\overline{E}_{z\lambda}$$

$$\nabla_{t} \times \overline{E}_{z\lambda} + i\beta_{\lambda}\hat{z} \times \overline{E}_{t\lambda} = i\omega\mu\overline{H}_{t\lambda}$$

$$\nabla_{t} \times \overline{H}_{z\lambda}i + i\beta_{\lambda}\hat{z} \times \overline{H}_{t\lambda} = -i\omega\varepsilon\overline{E}_{t\lambda}$$

- Take longitudinal and transverse components of curl equations with z phase variation.
- With propagation direction reversal the sign of β_{λ} changes
- But if sign of E_z and H_t are also reversed the original equations result
- Thus the reverse guided wave solution can be nothing more than the forward guided wave solution with these changes



- Consider TM w/r z case with Hy given and same z phase variation
- Will have Hy, Ez and Ex (but Ey = Hx = Hz = 0) Copyright 2006 Regents of University of California

6

 $E_{1z} = \frac{-v_1}{-i\omega\varepsilon_1} H_{1y}$

 $E_{2z} = \frac{+v_2}{-i\omega\varepsilon_2} H_{2y}$

 $\frac{-iv_1}{=} \frac{+iv_2}{=}$

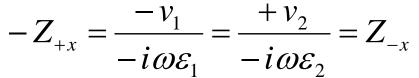
 $\mathcal{E}_1 \qquad \mathcal{E}_2$

 $\underline{E_{1z}} = \underline{E_{2z}}$

 H_{1v} H_{2v}

Boundary Conditions

- Hy continuous (or) D normal continuous gives H₁₀ =H₂₀.
- Ez continuous gives final constraint to find k_z.
- This constraint is the same as setting the impedance looking upward equal to the negative of the impedance looking downward.
- Impedance looking upward is capacitive (neg imy).
- Impedance looking downward thus need to be inductive.



Copyright 2006 Regents of University of California

Solving for Surface Wave Conditions

$$\frac{v_1}{\varepsilon_1} = \frac{-v_2}{\varepsilon_2}$$

$$v_1 = \sqrt{k_z^2 - \omega^2 \mu_0 \varepsilon_1}$$

$$v_2 = \sqrt{k_z^2 - \omega^2 \mu_0 \varepsilon_2}$$

$$k_z = k_1 \sqrt{\frac{\varepsilon_2}{(\varepsilon_2 + \varepsilon_1)}}$$

$$v_1 = k_1 \sqrt{\frac{-\varepsilon_1}{(\varepsilon_2 + \varepsilon_1)}}$$

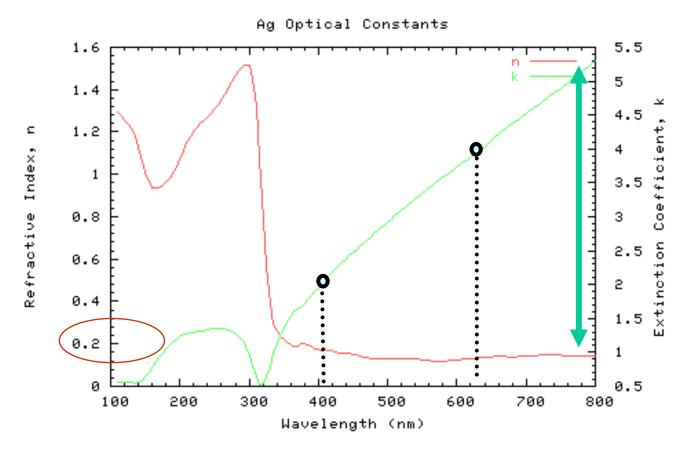
- Constraint
- Substitute definition of v_1 and v_2 to solve for k_z .
- Substitute solution for k_z to find other properties
 - $-v_1$ and v_2 (localization in x)
 - Resolution in z with large k_z
 - Probe height in x

Physical Interpretation

$$v_1 = k_1 \sqrt{\frac{-\varepsilon_1}{(\varepsilon_2 + \varepsilon_1)}}$$
 $k_z = k_1 \sqrt{\frac{\varepsilon_2}{(\varepsilon_2 + \varepsilon_1)}}$ $\frac{v_2}{v_1} = \frac{-\varepsilon_2}{\varepsilon_1}$

- Want v_1 real so exponential decay away from boundary
- Since ε_1 is real and positive this means that the denominator must go negative.
- This occurs when $\varepsilon_2 < -\varepsilon_1$. (plasmon condition for a single surface to support a guided wave)
- In metals just below their plasma resonance frequency a negative permittivity can occur (Ag, Au, Cu, Al)
- In general k_z is complex and the waves die out in a few microns

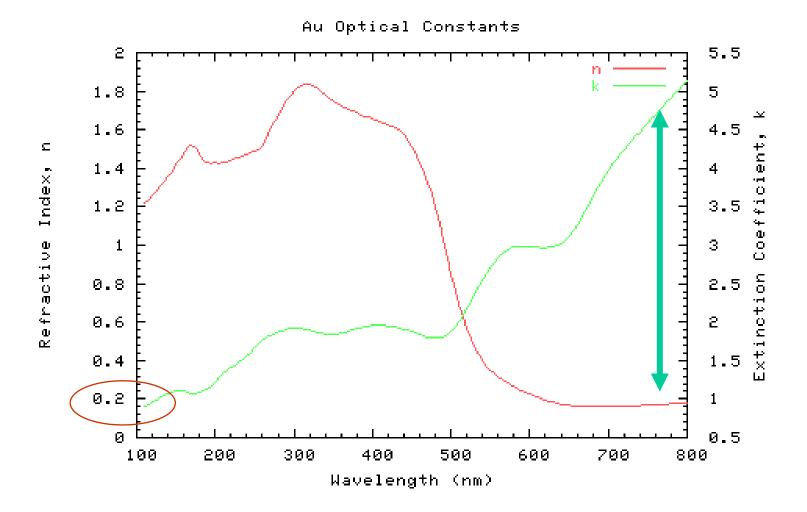
Refractive Index of Silver



• http://www.microe.rit.edu/research/lithography/utilities.htm

Copyright 2006 Regents of University of California

Refractive Index of Gold



• http://www.microe.rit.edu/research/lithography/utilities.htm

Copyright 2006 Regents of University of California

Physical Estimates for Air and Silver

$$\frac{v_2}{v_1} = \frac{-\varepsilon_2}{\varepsilon_1} \approx \frac{K^2}{1}$$

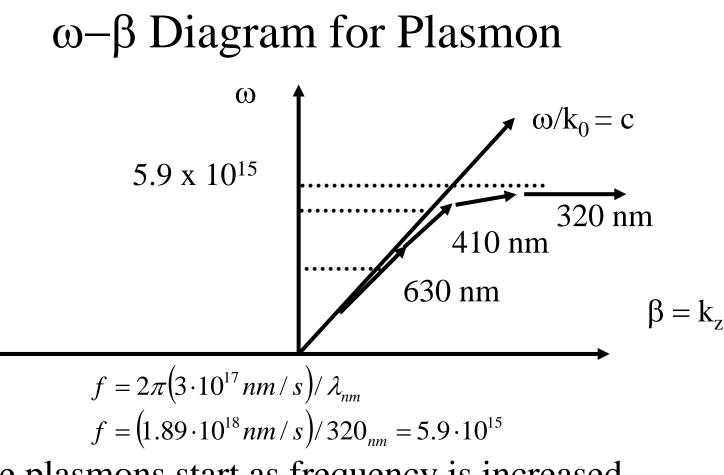
$$n_2 = n_r + iK$$

$$n_1 = 1.0$$

$$k_z = k_0 \sqrt{\frac{\varepsilon_2}{(\varepsilon_2 + \varepsilon_1)}} \approx k_0 \left[\frac{K}{\sqrt{K^2 - 1}} + \frac{in_r}{2(K^2 - 1)^{3/2}} \right]$$

$$l_z / \lambda = \frac{2(K^2 - 1)^{3/2}}{n_r}$$

- Approximately for silver in the visible
 - $n_r = 0.2$, and K = 2 (410 nm) and 4 (630 nm)
 - the velocity is 0.87c and 0.97c,
 - $\ \ \lambda_{surface} = (2\pi/k_z)$ can be smaller than λ_{air} by over 3X => 3X resolution improve
 - the 1/e length is 4 λ (1.8 μ m) and 295 λ (2.9 μ m)
 - The 1/e penetration into the metal is about λ surface/5
 - The 1/e penetration into air is 4 to 16 times larger



- The plasmons start as frequency is increased
 - close to the speed of light line,
 - become slightly slower, and
 - turn into a very slow wave (horizontal line) at the plasma frequency.

Copyright 2006 Regents of University of California

Plasmon Characteristics



- 630 nm: 0.97c, 1/e 46.3λ (29 μm), 16X air
- 410 nm: 0.86c, 1/e 4.1λ (1.8 μm), 4X air
- 320 nm:
 - $k_z = 10k_0 \Rightarrow 10X$ resolution
 - But evanescent near fields are 10X faster decay

Near Field Probe Limits

$$R = \frac{\lambda_{surface}}{2\pi} = \frac{1}{k_z} = \frac{1}{k_1 \sqrt{\frac{\varepsilon_2}{(\varepsilon_1 + \varepsilon_2)}}}$$
$$h_{1/e} = \frac{1}{v_1} = \frac{1}{k_1 \sqrt{\frac{-\varepsilon_1}{(\varepsilon_1 + \varepsilon_2)}}}$$
$$h_{1/e} = \sqrt{\frac{-\varepsilon_1}{\varepsilon_2}} R \approx R$$

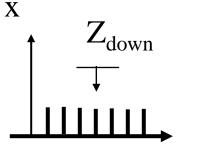
- Work near the plasmon frequency to make k_z large and resolution smaller than normal by 3 to 10X.
- But the 1/e height reduces by the same amount that the resolution is reduced

Lecture #15 Ver 11/12/06

Surface Topography Can Aid Guided Waves

Harrington 4.8 Corrugated Surface

$$Z_{down} = -i \sqrt{\frac{\mu_1}{\varepsilon_1}} \tan k_0 d = -i377 \tan k_0 d$$



$$Z_{up} = \frac{-v_1}{i\omega\varepsilon_1}$$

$$k_z = k_0 \sqrt{1 + \tan^2 k_0 d}$$

Impedance looking down into the corrugations is inductive.

- Impedance looking into slot is that of a parallel plate waveguide terminated in a short.
- Slsot must be narrow compared to a wavelength
- Depth must be >5% of wavelength to contribute.
- For plasmons
 - effects might add
 - which wavelength should be used

Z