EE243 Advanced Electromagnetic Theory

Lec \# 16 Dielectric Waveguides

- Recap Solutions for Homework Set 6
- Review for the Midterm Examination
- Dispersion Equation Dielectric Slab Waveguides
- Modes in Dielectric Slab Waveguides

Reading: Jackson 8.11 and Harrington 4.7.

Midterm Exam

Review Th, Oct 19

- In Class Tuesday October $24^{\text {th }}$
- Covers material through Chapter 7 (Lecture 12)
- Open Book, Open Notes, Bring Calculator, Paper Provided
- Topics
- Green's functions free space and use in Theorems and concepts with emphasis on statics
- Separation of variables in rectangular coordinates using $\mathrm{N}-1$ and N method
- Time-Harmonic ME, planewaves, boundary conditions, and dispersion

Physical Effects: Wave Direction Change

Propagation vector k-vector diagram

- Draw concentric circles of radius $\mathrm{k}_{\mathrm{air}}$ and $\mathrm{k}_{\text {med }}$
- Incident wave has k vector given (arrow k_{1})
- Find the component parallel to the surface (dotted line)
- Force the k -vector in air $\mathrm{k}_{\text {air }}$ and k -vector reflected $\mathrm{k}_{\text {ref }}$ to have the same parallel component (lie on dotted line)
- Choose point on the circle to give these new k-vectors (arrows) the correct length for the wave equation in the media that they are in

Plane Interface: Physical Effects

- Total Internal Reflection
- Parallel part of $\mathrm{k}_{\text {med }}>\mathrm{k}_{0}$
- Brewster Angle
- Polarization in plane of incidence reflection coefficient goes to zero giving 100\% transmission
- Polarization dependent reflection phase change
- Converts linear to part circular polarization
- Beam energy penetration δ and spot shift D (GoosHanchen effect)

Separation of Variables: Source Strategy

- View source as being on $\mathrm{z}=\mathrm{f}$ plane.
- Require $\Phi_{2}-\Phi_{1}=\mathrm{D}(\mathrm{x}, \mathrm{y}) / \varepsilon_{0}$ at $\mathrm{z}=\mathrm{f}$
- Also require at $\mathrm{z}=\mathrm{f} \quad\left(\bar{E}_{2}-\bar{E}_{1}\right) \cdot \hat{n}=\sigma_{\text {SURFACE }}(x, y) / \varepsilon_{0}$
- Multiply each of these equations by one of the composite eigenfunctions and integrate over x,y cross-section
- Gives two equations relating A_{nm} and B_{nm} for the same nm .

$$
\nabla^{2} \psi=-\frac{4 \pi q}{\varepsilon} \delta(x-d) \delta(y-e) \delta(z-f)
$$

Copyright 2006 Regents of University of California

Reciprocity

Lecture 4

Reciprocity for
$\Phi\left(\mathrm{x}_{2}, \mathrm{q}_{1}\right)=\Phi\left(\mathrm{x}_{1}, \mathrm{q}_{2}\right)$
Proof:

- Green’s Theorem

$$
G\left(\bar{x}, \bar{x}^{\prime}\right)=G\left(\bar{x}^{\prime}, \bar{x}\right)
$$

- Poisson's equation for $\Phi\left(\mathrm{x}_{2}, \mathrm{q}_{1}\right)$ and $\Phi\left(\mathrm{x}_{1}, \mathrm{q}_{2}\right)$ causes volume integral to give $\Phi\left(\mathrm{x}_{2}, \mathrm{q}_{1}\right)-\Phi\left(\mathrm{x}_{1}, \mathrm{q}_{2}\right)$
- In surface integral use homogeneous boundary condition to replace potential with derivative and integrand vanishes at every point on the boundary

Integral Equation to Find Surface Charge

$\Phi(\bar{x})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \rho\left(\bar{x}^{\prime}\right) G\left(\bar{x}, \bar{x}^{\prime}\right) d^{3} x^{\prime}+\frac{1}{4 \pi} \oint_{S}\left[G\left(\bar{x}, \bar{x}^{\prime}\right) \frac{\delta \Phi}{\delta n^{\prime}}-\Phi\left(\bar{x}^{\prime}\right) \frac{\delta G\left(\bar{x}, \bar{x}^{\prime}\right)}{\delta n^{\prime}}\right] d a^{\prime}$

- Example: Grounded Conducting Object and $\rho(\mathrm{x})$ $\Phi=0=>$ all of the F surface term drop out $\mathrm{d} \Phi / \mathrm{dn}$ ' $=\sigma_{\text {surface }}$ remains

Lecture 5
Since Φ is known at every point on object restrict x to be on the object
Gives and integral equation for the surface charge

$$
0=\left[\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \rho\left(\bar{x}^{\prime}\right) G\left(\bar{x}, \bar{x}^{\prime}\right) d^{3} x^{\prime}+\frac{1}{4 \pi} \oint_{S}\left[G\left(\bar{x}, \bar{x}^{\prime}\right) \frac{\delta \Phi}{\delta n^{\prime}}\right] d a^{\prime}\right]_{\bar{x}_{\text {_on_object }}}
$$

Generally the Green's function for free space is used

$$
0=\left[\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \rho\left(\bar{x}^{\prime}\right) \frac{1}{\left|\bar{x}-\bar{x}^{\prime}\right|} d^{3} x^{\prime}+\frac{1}{4 \pi} \oint_{S}\left[\frac{1}{\left|\bar{x}-\bar{x}^{\prime}\right|} \frac{\delta \Phi}{\delta n^{\prime}}\right] d a^{\prime}\right]_{\bar{x}_{-} \text {on_object }}
$$

Copyright 2006 Regents of University of California

Overview

- Source free guided wave solutions can exist on dielectric slabs, layers and fibers.
- The necessary conditions for their longitudinal propagation constant are found by representing the fields and matching boundary conditions on their transverse field to determine eigenvalues.
- The transverse behavior is exponential outside the dielectric and oscillatory inside the dielectric.
- The physical characteristics on the modes are quite similar to those in metal waveguides and include TE/TM classification, orthogonality, cut-off, etc.

Dielectric Waveguides

$$
\begin{aligned}
& e^{j \omega t} \\
& e^{-j k_{z} z} \\
& v_{0}=\sqrt{k_{z}^{2}-\omega^{2} \mu_{0} \varepsilon_{0}} \\
& k_{x}=\sqrt{\omega^{2} \mu_{0} \varepsilon 1-k_{z}^{2}} \\
& v_{2}=\sqrt{k_{z}^{2}-\omega^{2} \mu_{2} \varepsilon_{2}}
\end{aligned}
$$

- Three regions
- Choose TM (or TE)
- Will have Hy, Ez and Ex (Ey, Hx, and Hz)

Dielectric Waveguides

$$
\begin{aligned}
& H_{0 y}^{+}(\bar{x})=H_{0}^{+} \hat{y} e^{-v_{0} x} e^{-j k_{z} z} \\
& H_{1 y}(\bar{x})=H_{1}^{+} \hat{y} e^{-j k_{x} x} e^{-j k_{z} z}+H_{1}^{-} \hat{y} e^{+j k_{x} x} e^{-j k_{z} z} \\
& H_{2 y}^{-}(\bar{x})=H_{2}^{-} \hat{y} e^{+v_{0} x} e^{-j k_{z} z}
\end{aligned}
$$

- Consider TM w/r z case
- Write expression for Hy in each of three regions (above, in and below dielectric).
- Note: Include Kinetic boundary condition in expressions

Dielectric Waveguides

$$
\begin{aligned}
& \nabla \times \bar{H}=j \omega \varepsilon \bar{E} \\
& E_{z}(\bar{x})=\frac{-1}{j \omega \varepsilon} \frac{\partial H_{y}(\bar{x})}{\partial x}
\end{aligned}
$$

$$
E_{0 z}^{+}(\bar{x})=\frac{+v_{0}}{j \omega \varepsilon} H_{0 y}^{+}(\bar{x})
$$

$$
E_{1 z}^{+}(\bar{x})=\frac{-j k_{x}}{j \omega \varepsilon} H_{1 y}^{+}(\bar{x})+\frac{j k_{x}}{j \omega \varepsilon} H_{1 y}^{-}(\bar{x})
$$

$$
E_{2 z}^{-}(\bar{x})=\frac{-v_{2}}{j \omega \varepsilon} H_{2 y}^{+}(\bar{x})
$$

- Find Ez in each of three regions
- Apply dynamic boundary conditions (four)
- Hy continuous at top and bottom of dielectric
- Ez continuous at top and bottom of dielectric

Dielectric Waveguide: Dispersion Eq.

Harrington 4.7 Special case of air on top and bottom, thickness a
odd

TM

$$
\begin{aligned}
& \frac{k_{x} a}{2} \tan \frac{k_{x 0} a}{2}=\frac{\varepsilon_{1}}{\varepsilon_{0}} \frac{v_{0} a}{2} \\
& -\frac{k_{x} a}{2} \cot \frac{k_{x 0} a}{2}=\frac{\varepsilon_{1}}{\varepsilon_{0}} \frac{v_{0} a}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{k_{x} a}{2} \tan \frac{k_{x 0} a}{2}=\frac{\mu_{1}}{\mu_{0}} \frac{v_{0} a}{2} \\
& -\frac{k_{x} a}{2} \cot \frac{k_{x 0} a}{2}=\frac{\mu_{1}}{\mu_{0}} \frac{v_{0} a}{2}
\end{aligned}
$$

- Convenient within TM and TE to distinguish between even $\left(\operatorname{cosk}_{\mathrm{x}} \mathrm{x}\right)$ and odd $\sin \left(\mathrm{k}_{\mathrm{y}} \mathrm{x}\right)$ variations
- Results in four dispersion relationships
- Two for TM
- Two for TE

Dielectric Waveguide: Physical Nature

Harrington 4.7 Special case of air on top and bottom, thickness a

TM
odd $\quad \frac{k_{x} a}{2} \tan \frac{k_{x 0} a}{2}=\frac{\varepsilon_{1}}{\varepsilon_{0}} \frac{v_{0} a}{2}$

- Right hand side is a circle; Left hand side is spikes in tan (See H Fig 4-11)
- Odd $\sin \left(\mathrm{k}_{\mathrm{y}} \mathrm{x}\right)$ variations have no cut-off (always exist) in both TM and TE
- Mutiple solutions (intersections) give multiple modes
- Additional new mode about every half wavelength of oscillatory variation.
- Weighted by material contrast sqrt $\left(\mu_{1} \varepsilon_{1}-\mu_{0} \varepsilon_{0}\right)$

Surface-Guided Waves

$$
\begin{aligned}
& e^{j \omega t} \\
& e^{-j k_{z} z} \\
& v_{0}=\sqrt{k_{z}^{2}-\omega^{2} \mu_{0} \varepsilon_{0}} \\
& k_{x}=\sqrt{\omega^{2} \mu_{0} \varepsilon 1-k_{z}^{2}}
\end{aligned}
$$

- Two regions
- Choose TM (or TE)
- Will have half of the solutions from the symmetric dielectric slab: TM odd and TE even of the slab

Dielectric Waveguides: Resonance View

- Add up phase of transverse round trip $=n 2 \pi$
- Use the phase of the reflection coefficient to account for penetration of fields outside dielectric
- This phase will depend on polarization and angle and is thus must be found iteratively

