EE243 Advanced Electromagnetic Theory

Lec \# 17 Dielectric Waveguides - Kogelnik

- Symmetries for time-reversal and direction reversal
- Orthogonality of modes with different β 's
- Mode Expansion including Radiation Modes
- Coupled Modes (via Polarization)

Reading: Kogelnik 34-44, 66-78

Overview

- The very general set of principles developed by Jackson for metallic waveguides also apply to dielectric waveguides of arbitrary cross sections.
- Propagating modes have real transverse fields and imaginary longitudinal fields
- Evanescent modes have real valued electric fields and imaginary valued magnetic fields and are 90 out of phase
- Mode Orthogonality (when propagation constant due to eigenvalues differ)
- Expansion in Modes including Radiation Modes
- Coupling between modes due to geometry induced changes in polarization

$\omega-\beta$ Diagram for Dielectric Guide

- The mode may starts along $\mathrm{n}_{\text {AIR }}$ at low frequency
- Then transitions toward the $\mathrm{n}_{\text {GUIDE }}$
- And asymptotes to $\mathrm{N}_{\mathrm{GUIDE}}$

Dielectric Layer with Substrate

Mode Properties Follow from Symmetry

$$
\begin{aligned}
& \bar{E}_{2}(r, t)=\bar{E}_{1}(r,-t) \\
& \bar{H}_{2}(r, t)=-\bar{H}_{1}(r,-t) \\
& \bar{E}_{2}(r)=\bar{E}_{1}^{*}(r,) \\
& \bar{H}_{2}(r)=-\bar{H}_{1}^{*}(r)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{E}_{t 2}(z)=\bar{E}_{t 1}(-z) \\
& \bar{H}_{t 2}(z)=-\bar{H}_{t 1}(z) \\
& \bar{E}_{2 z}(z)=-\bar{E}_{z 1}^{*}(z) \\
& \bar{H}_{z 2}(z)=\bar{H}_{z 1}^{*}(z)
\end{aligned}
$$

- Two Symmetries
- Time-reversal in Maxwell's Equation reverses H but not E
- Propagation direction reversal with $\mathrm{e}^{\mathrm{jwt}}$ reverses E longitudinal and H transverse
- Result
- Propagation real valued transvers, imy valued longitudinal
- Evanescent real valued E and imaginary valued H

Orthogonality of the Modes

Kogelnik 2.25:
Derivation similar to that for Lorentz reciprocity

- use E x H cross product for two modes
- reverse order take complex conjugate and add,
- Apply divergence theorem to cross section, argue integral over contour at infinity is zero, and
- finally apply to mode in reverse direction and add

Result the transverse E crossed Transverse H integrated over the cross section is zero when the propagation constant of the two modes differs.

Orthogonality of Modes (Cont.)
 $\nabla_{t}\left(\bar{E}_{v} \times \bar{H}_{\mu}^{*}+\bar{E}_{\mu}^{*} \times \bar{H}_{v}\right)-j\left(\beta_{v}-\beta_{\mu}\right)\left(\bar{E}_{t v} \times \bar{H}_{t \mu}^{*}+\bar{E}_{t \mu}^{*} \times \bar{H}_{t v}\right)=0$

- Apply divergence theorem to cross section, argue integral over contour at infinity is zero, and
- finally apply to mode in reverse direction and add
- Result the transverse E crossed Transverse H integrated over the cross section is zero when the propagation constant of the two modes differs.
- Apply to find mode amplitudes produced by $\mathrm{E}_{\text {TAN }}$ and $\mathrm{H}_{\text {TAN }}$ on a cross sectional plane

$$
\begin{aligned}
& a_{v}=\iint_{\infty} d x d y\left(\bar{E}_{t} \times \bar{H}_{v}^{*}+\bar{E}_{v}^{*} \times \bar{H}_{t}\right) \\
& b_{v}=\iint_{\infty} d x d y\left(\bar{E}_{t} \times \bar{H}_{v}^{*}-\bar{E}_{v}^{*} \times \bar{H}_{t}\right)
\end{aligned}
$$

Modal Representation

$$
\begin{aligned}
& \bar{E}_{t}(x, y)=\sum_{v} \sum_{\mu} \alpha_{v \mu} \bar{E}_{v \mu}(x, y)+\iint_{0}^{\infty} d \mu d v a(v, \mu) \bar{E}(\mu, v ; x, y) \\
& \bar{H}_{t}(x, y)=\sum_{v} \sum_{\mu} \alpha_{v \mu} \bar{H}_{v \mu}(x, y)+\iint_{0}^{\infty} d \mu d v a(v, \mu) \bar{H}(\mu, v ; x, y)
\end{aligned}
$$

The summation is over the discrete set of guided modes. The integral is over the continuous set of plane wave like radiation modes.
Note that the sum has a double index because the cross sections has n-1 = 2 directions.
In addition the sume over TE and TM is also implicit.

Dielectric Layer Modes

- Discrete guided modes
- Continuum of radiating modes in air and substrate
- TE and TM cases not separated

Copyright 2006 Regents of University of California

Modal Expansion Coefficients

- Both the discrete and continuous modes can be normalized to give the Kronecker delta and delta function.
- The modes independently carry power
- The amplitude of a given mode can be found by multiplying by the model spatial variation and integrating over the cross section.
- The transverse E and H over a given cross-section can be broken down in to forward and reverse modes by integrating combinations such as $\mathrm{E}_{\mathrm{F}} \mathrm{XH}_{\mathrm{M}} *+\mathrm{E}_{\mathrm{M}}{ }^{*} \mathrm{xH}_{\mathrm{F}}$ over the cross section. Here M is a mode and F is an arbitrary field on the cross section.

Power Flow and Stored Energy

- The poynting vector is integrated over the cross-section
- The definition of Stored energy and group velocity are used Power $=\mathrm{v}_{\mathrm{g}} \mathrm{W}$
- The situation is specialized to lossless and $\mathrm{v}_{\mathrm{p}} / \mathrm{v}_{\mathrm{g}}=\left(\mathrm{W}_{\mathrm{t}}+\mathrm{W}_{\mathrm{z}}\right)\left(\mathrm{W}_{\mathrm{t}}-\mathrm{W}_{\mathrm{z}}\right)$

Coupled-Mode Concept

Perturbations

- Consider a geometry or material change for which there is an additional source of excitation with complex polarization amplitude P
- This polarization can be due to the E field from a strong mode hitting a region of missing or added dielectric.
- This polarization source then drives other modes.
- This sourcing of other modes can occur simultaneously among modes and is know as coupled modes.
- The distribution of the polarization can also be made periodic in distance along the guide to couple in our out planewaves.

Coupled Mode Formalism

- Start a time-average Lorentz Reciprocity like formulation with two sources and two sets of fields
- Integrate over the cross-section
- treat the left side with the divergence theorem to get a cross-section integral of the rate of change of the added double cross product of the two sets of transverse fields
- the right hand side is the cross sectional integral of the polarization times the fields
- Substitute the transverse field components assuming a direction for each and that their amplitudes a and b are slowly varying.
- For the same direction

$$
\begin{aligned}
& \mathrm{a}_{\mu}^{\prime}+\mathrm{j} \beta_{\mu} a_{\mu}=-j \omega \text { integral PE } \\
& \mathrm{b}_{\mu}^{\prime}+\mathrm{j} \beta_{\mu} b_{\mu}=+j \omega \text { integral PE }
\end{aligned}
$$

Coupled Mode Formalism (Cont.)

$$
\begin{aligned}
& \nabla\left(\bar{E}_{1} \times \bar{M}_{+}^{*}+\bar{E}_{2}^{*} \times \bar{H}_{1}\right)=-j \omega \bar{P}_{1} \cdot \bar{E}_{2}^{*}+j \omega P_{2}^{*} \cdot \bar{E}_{1} \\
& \bar{P}=\Delta \varepsilon \bar{E} \\
& \bar{P}_{i}=\Delta \varepsilon_{i j} \bar{E}_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d a_{\mu}}{d z}+j \beta_{u} a_{\mu}=-j \omega \iint_{\infty} d x d y \bar{P}_{\text {TOT }} \cdot \bar{E}_{\mu}^{*} \\
& \frac{d b_{\mu}}{d z}-j \beta_{u} b_{\mu}=j \omega \iint_{\infty} d x d y \bar{P}_{\text {TOT }} \cdot \bar{E}_{-\mu}^{*}
\end{aligned}
$$

Coupled Mode Situations

Uniform Guides

- Waves in same or opposite directions
- Propagating or evanesent modes

Periodic Couplers

- Surface height or dielectric material variation
- Coupling becomes a periodic function that introduces new modes with $\beta_{n}=\beta_{0}+2 \pi /$ Period
- These k -vectors may be in the range $-\mathrm{k}_{0}$ to $+\mathrm{k}_{0}$ and give rise to plane waves that propagate away from the structure.

Periodic Wave Vectors

- The mode k -vector is larger than k_{O} and smaller than k_{G}
- The periodic coupling creates new k-vectors spaced by $2 \pi /$ Period
- The new k -vectors within the k_{0} circle correspond to radiation waves
- Move upward vertically from $\mathrm{k}_{\mathrm{m}-1}$ to find the k_{y} and angle.

