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EE243 Advanced Electromagnetic Theory

Lec # 17 Dielectric Waveguides - Kogelnik

• Symmetries for time-reversal and direction reversal
• Orthogonality of modes with different β’s
• Mode Expansion including Radiation Modes
• Coupled Modes (via Polarization)

Reading: Kogelnik 34-44, 66-78
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Overview
• The very general set of principles developed by 

Jackson for metallic waveguides also apply to 
dielectric waveguides of arbitrary cross sections.
– Propagating modes have real transverse fields and 

imaginary longitudinal fields
– Evanescent modes have real valued electric fields and 

imaginary valued magnetic fields and are 90 out of phase
– Mode Orthogonality (when propagation constant due to 

eigenvalues differ)
– Expansion in Modes including Radiation Modes
– Coupling between modes due to geometry induced changes 

in polarization



Copyright 2006 Regents of University of California
3

EE 210 Applied EM Fall 2006, Neureuther Lecture #17 Ver 10/23/06

ω−β Diagram for Dielectric Guide

• The mode may starts along nAIR at low frequency
• Then transitions toward the nGUIDE
• And asymptotes to NGUIDE
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Dielectric Layer with Substrate
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Mode Properties Follow from Symmetry

• Two Symmetries
– Time-reversal in Maxwell’s Equation reverses H but not E
– Propagation direction reversal with ejwt reverses E longitudinal and 

H transverse

• Result
– Propagation real valued transvers, imy valued longitudinal
– Evanescent real valued E and imaginary valued H
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Orthogonality of the Modes
Kogelnik 2.25: 

Derivation similar to that for Lorentz reciprocity 
• use E x H cross product for two modes
• reverse order take complex conjugate and add, 
• Apply divergence theorem to cross section, argue 
integral over contour at infinity is zero, and
• finally apply to mode in reverse direction and add

Result the transverse E crossed Transverse H integrated 
over the cross section is zero when the propagation 
constant of the two modes differs. 
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Orthogonality of Modes (Cont.)
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• Apply divergence theorem to cross section, argue 
integral over contour at infinity is zero, and
• finally apply to mode in reverse direction and add
• Result the transverse E crossed Transverse H integrated 
over the cross section is zero when the propagation 
constant of the two modes differs. 
• Apply to find mode amplitudes produced by ETAN and 
HTAN on a cross sectional plane
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Modal Representation
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The summation is over the discrete set of guided modes.
The integral is over the continuous set of plane wave like 
radiation modes.
Note that the sum has a double index because the cross 
sections has n-1 = 2 directions.
In addition the sume over TE and TM is also implicit.
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Dielectric Layer Modes
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• Discrete guided modes
• Continuum of radiating modes in air and substrate
• TE and TM cases not separated

ksub

kair
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Modal Expansion Coefficients

• Both the discrete and continuous modes can be 
normalized to give the Kronecker delta and delta 
function. 

• The modes independently carry power
• The amplitude of a given mode can be found by 

multiplying by the model spatial variation and 
integrating over the cross section.

• The transverse E and H over a given cross-section 
can be broken down in to forward and reverse 
modes by integrating combinations such as  
EFxHM* + EM*xHF over the cross section. Here M 
is a mode and F is an arbitrary field on the cross 
section. 
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Power Flow and Stored Energy

• The poynting vector is integrated over the 
cross-section

• The definition of Stored energy and group 
velocity are used Power = vgW

• The situation is specialized to lossless and 
vp/vg = (Wt+Wz)(Wt-Wz)
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Coupled-Mode Concept

• Consider a geometry or material change for which there is an additional 
source of excitation with complex polarization amplitude P

• This polarization can be due to the E field from a strong mode hitting a 
region of missing or added dielectric.

• This polarization source then drives other modes.
• This sourcing of other modes can occur simultaneously among modes 

and is know as coupled modes.
• The distribution of the polarization can also be made periodic in 

distance along the guide to couple in our out planewaves.
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Coupled Mode Formalism
• Start a time-average Lorentz Reciprocity like formulation 

with two sources and two sets of fields
• Integrate over the cross-section 

• treat the left side with the divergence theorem to get a 
cross-section integral of the rate of change of the added 
double cross product of the two sets of transverse fields

• the right hand side is the cross sectional integral of the 
polarization times the fields

• Substitute the transverse field components assuming a 
direction for each and that their amplitudes a and b are 
slowly varying.

• For the same direction                 
a’µ + j βµaµ = -jω integral PE
b’µ + j βµbµ = + jω integral PE
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Coupled Mode Formalism (Cont.)
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Coupled Mode Situations

Uniform Guides
• Waves in same or opposite directions
• Propagating or evanesent modes
Periodic Couplers
• Surface height or dielectric material variation
• Coupling becomes a periodic function that 

introduces new modes with βn = βo + 2π/Period
• These k-vectors may be in the range –k0 to + k0

and give rise to plane waves that propagate away 
from the structure.
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Periodic Wave Vectors

• The mode k-vector is larger than kO and smaller than kG

• The periodic coupling creates new k-vectors spaced by 2π/Period
• The new k-vectors within the k0 circle correspond to radiation waves
• Move upward vertically from km-1 to find the ky and angle.
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