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EE243 Advanced Electromagnetic Theory

Lec # 21 Radiation

• Vector Potential Formulation for Finding Fields
• Near and Far Field Limits
• Multipole Components
• Far-Field Applications

Reading: Jackson Chapter 9

Fixed Slides 2, 3, 5, 9
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Overview
Charges in motion radiate. The radiation can be found by 

evaluating the vector potential and then taking the curl to 
get H and then another curl to get E. The radiating fields 
have E and H transverse to the outward direction and E/H 
is proportional to the impedance of free space and 
decrease as 1/r. Various oscillating charge moments create 
electric and magnetic dipoles and multipoles and each has 
a characteristic radiation pattern. These moments help 
characterize radion from small holes and slots. In the far-
field the radiation pattern is the Fourier transform of the 
current distribution.
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Localized Oscillating Source

• Electric monopole 
part of the potential 
(and fields) of a 
localized source is of 
necessity static.

• Hence the vector 
potential is sufficient 
to describe the 
radiating field.
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Radiating Zones

• Near (Static) Zone   d << r << λ
– Exponential is unity, => static and no radiation

• Intermediate (Induction) Zone d << r ~ λ
– General expansion required

• Far (Radiation) Zone   d << λ <<  r
– Approximate denominator as 1/r
– Approximate exponential as quadratic => Fresnel 
– Or Approximate exponential as linear => Fraunhoffer
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Electric Dipole Fields and Radiation

• Approximate exponent as 
constant

• Apply iωρ = Div J
• Integrate by parts
• Fields are perpendicular to n 

and perpendicular to each 
other

• Both E and H decrease as 1/r
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Poynting Vector for Electric Dipole

• Poynting vector gives power 
density per unit solid angle

• Substitute for fields
• Sin squared polar angle
• Integrate over azimuthal and 

polar angles to get net power 
radiated.
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Radiation for Short Wire Antenna

• Assume current is triangular 
–d/2 to d/2

• Evaluate dipole moment
• Evaluate Power
• Interpret coefficient of 

maximum current squared 
over 2 as resistance

• Cell phone at 2 GHz and 5 
cm high has impedance of 
about 15 ohms
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Magnetic Dipole and Electric Quadrapole Fields

• Approximate exponential phase in integral 
for A over source by more terms in a Taylor 
series

• Constant => electric dipole p
• First => magnetic dipole m (circulating 

current) plus quadrapole Qαβ

• Second = further monopoles
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Characterizing Small Sources

• Many types of sources small sources
– Probes, current loops, holes in metal screens,

• When sources are smaller than a wavelength they can 
be approximated by their electric and magnetic dipole 
moments

• The source contributions to producing fields can be 
evaluated using the reaction theorem

• Above is an example for waveguide apertures of 
radius R
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Aperture Radiation

• Rectangular current patch flowing in x direction over
-a/2 < x < a/2
-b/2 < y < b/2

• Plug in Fraunhoffer approximation for A
• Factor to F(x)G(y)
• View as product of two Fourier Transforms
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Aperture Radiation Beamwidth

• Look for first null
• Occurs when aperture is one wavelength 

wide and ful cycle integrates to zero
• FWHM = 60 degrees/size in wavelengths
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Antenna Array Patterns

• Composite Array id built from a element 
instantiated at array positions (convolution 
of element with space array factor)

• FT of convolution is product of FT’s
• Composite pattern is the array pattern times 

element pattern.
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