EE243 Advanced Electromagnetic Theory

Lec \# 21 Radiation

- Vector Potential Formulation for Finding Fields
- Near and Far Field Limits
- Multipole Components
- Far-Field Applications

Reading: Jackson Chapter 9

Overview

Charges in motion radiate. The radiation can be found by evaluating the vector potential and then taking the curl to get H and then another curl to get E . The radiating fields have E and H transverse to the outward direction and E / H is proportional to the impedance of free space and decrease as $1 / r$. Various oscillating charge moments create electric and magnetic dipoles and multipoles and each has a characteristic radiation pattern. These moments help characterize radion from small holes and slots. In the farfield the radiation pattern is the Fourier transform of the current distribution.

Localized Oscillating Source

$$
\begin{aligned}
& \rho(\bar{x}, t)=\rho(\bar{x}) e^{-i o t} \\
& \bar{J}(\bar{x}, t)=\bar{J}(\bar{x}) e^{-i o t} \\
& \bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \int \bar{J}\left(\bar{x}^{\prime}\right) \frac{i(\bar{x} \bar{x} \bar{x} \mid}{\left|\bar{x}-\bar{x}^{\prime}\right|} d^{3} x^{\prime} \\
& \bar{H}=\frac{1}{\mu_{0}} \nabla \times \bar{A} \\
& \bar{E}=\frac{i Z_{0}}{k} \nabla \times \bar{H}-\nabla \Phi \\
& \Phi(\bar{x})=\int \frac{\rho\left(\bar{x}^{\prime}\right)}{\left|\bar{x}-\bar{x}^{3}\right|} d^{3} x^{\prime}
\end{aligned}
$$

- Electric monopole part of the potential (and fields) of a localized source is of necessity static.
- Hence the vector potential is sufficient to describe the radiating field.

Radiating Zones

- Near (Static) Zone $\mathrm{d} \ll \mathrm{r} \ll \lambda$
- Exponential is unity, $=>$ static and no radiation
- Intermediate (Induction) Zone $\mathrm{d} \ll \mathrm{r} \sim \lambda$
- General expansion required
- Far (Radiation) Zone $\mathrm{d} \ll \lambda \ll \mathrm{r}$
- Approximate denominator as $1 / \mathrm{r}$
- Approximate exponential as quadratic => Fresnel
- Or Approximate exponential as linear => Fraunhoffer

$$
\mid \bar{x}-\bar{x}^{\prime} \approx r-\bar{n} \cdot \bar{x}^{\prime}
$$

Approximated by

$\bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} \int \bar{J}\left(\bar{x}^{\prime}\right) e^{i k\left(\bar{n} \cdot \bar{x}^{\prime}\right)} d^{3} x^{\prime} \quad$| $\begin{array}{l}\text { In Fouriection parallel to n } \mathrm{n}\end{array}$ |
| :--- |

Electric Dipole Fields and Radiation

$$
\begin{array}{ll}
\bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \int \bar{J}\left(\bar{x}^{\prime}\right) \frac{e^{i k\left|\bar{x}-\bar{x}^{\prime}\right|}}{\left|\bar{x}-\bar{x}^{\prime}\right|} d^{3} x^{\prime}=-\frac{i \mu_{0} \omega}{4 \pi} \bar{p} \frac{e^{i k r}}{r} \\
\bar{p}=\int \bar{x}^{\prime} \rho\left(\bar{x}^{\prime}\right) d^{3} x^{\prime} & \text { Approximate exponent as } \\
\bar{H} \approx \frac{c k^{2}}{4 \pi}(\bar{n} \times \bar{p}) \frac{e^{i k r}}{r} & \text { constant } \\
\bar{E}=Z_{0} \bar{H} \times \bar{n} & \text { Apply i} \omega \rho=\text { Div J } \\
& \text { Integrate by parts }
\end{array}
$$

- Fields are perpendicular to n and perpendicular to each other
- Both E and H decrease as $1 / \mathrm{r}$

Poynting Vector for Electric Dipole

$$
\begin{aligned}
& \frac{d P}{d \Omega}=\frac{1}{2} \operatorname{Re}\left[r^{2} \bar{n} \cdot \bar{E} \times \bar{H}^{*}\right] \\
& \frac{d P}{d \Omega}=\frac{c^{2} Z_{0}}{32 \pi^{2}} k^{4}|(n \times p) \times n|^{2} \\
& \frac{d P}{d \Omega}=\frac{c^{2} Z_{0}}{32 \pi^{2}} k^{4}\left|\bar{p}^{2}\right| \sin ^{2} \theta \\
& P=\frac{c^{2} Z_{0}}{12 \pi} k^{4}\left|\bar{p}^{2}\right|
\end{aligned}
$$

- Poynting vector gives power density per unit solid angle
- Substitute for fields
- Sin squared polar angle
- Integrate over azimuthal and polar angles to get net power radiated.

Radiation for Short Wire Antenna

$$
\begin{aligned}
& p=\frac{i I_{0} d}{2 \omega} \\
& \frac{d P}{d \Omega}=\frac{Z_{0} I_{0}^{2}}{128 \pi^{2}}(\mathrm{kd})^{2} \sin ^{2} \theta \\
& P=\frac{Z_{0} I_{0}^{2}}{48 \pi^{2}}(\mathrm{kd})^{2} \\
& R_{\text {RAD }} \approx 5(\mathrm{kd})^{2} \text { ohms }
\end{aligned}
$$

- Assume current is triangular -d/2 to d/2
- Evaluate dipole moment
- Evaluate Power
- Interpret coefficient of maximum current squared over 2 as resistance
- Cell phone at 2 GHz and 5 cm high has impedance of about 15 ohms

Magnetic Dipole and Electric Quadrapole Fields

- Approximate exponential phase in integral for A over source by more terms in a Taylor series
- Constant => electric dipole p
- First => magnetic dipole \mathbf{m} (circulating current) plus quadrapole $\mathrm{Q}_{\alpha \beta}$
- Second = further monopoles

$$
\begin{aligned}
& \text { Characterizing Small Sources } \\
& \bar{p}_{\text {eff }}=\varepsilon \bar{n} \int\left(\bar{x} \cdot \bar{E}_{\text {tan }}\right) d a=-\frac{4 \varepsilon_{0} R^{3}}{3} \bar{E}_{0} \\
& \bar{m}_{e f f}=\frac{2}{i \mu \omega} \int\left(\bar{n} \times \bar{E}_{\text {tan }}\right) d a=2 \int \bar{x}\left(\hat{n} \cdot H_{0}\right) d a=\frac{8 R^{3}}{3} \bar{H}_{0} \\
& A_{\lambda}^{ \pm}=i \frac{\omega Z_{\lambda}}{4}\left[\bar{p}_{e f f} \cdot \bar{E}_{\lambda}^{ \pm}(0)-\bar{m}_{e f f} \cdot \bar{B}_{\lambda}^{ \pm}(0)+\ldots\right]
\end{aligned}
$$

- Many types of sources small sources
- Probes, current loops, holes in metal screens,
- When sources are smaller than a wavelength they can be approximated by their electric and magnetic dipole moments
- The source contributions to producing fields can be evaluated using the reaction theorem
- Above is an example for waveguide apertures of radius R

Aperture Radiation

$$
\begin{aligned}
& \mid \bar{x}-\bar{x}^{\prime} \approx r-\bar{n} \cdot \bar{x}^{\prime} \\
& \bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} \int \bar{J}\left(\bar{x}^{\prime}\right) e^{i k\left(\bar{n} \cdot \bar{x}^{\prime}\right)} d^{3} x^{\prime}
\end{aligned}
$$

$$
\bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} \int_{-a / 2}^{a / 2} e^{i k x^{\prime}} d x^{\prime} \int_{-b / 2}^{b / 2} e^{i k y^{\prime}} d y^{\prime}
$$

$$
\bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} a b\left[\frac{\sin (k a x / 2 r)}{k a x / 2 r} \frac{\sin (k a y / 2 r)}{k a y / 2 r}\right]
$$

- Rectangular current patch flowing in x direction over

$$
\begin{aligned}
& -a / 2<x<a / 2 \\
& -b / 2<y<b / 2
\end{aligned}
$$

- Plug in Fraunhoffer approximation for A
- Factor to F(x)G(y)
- View as product of two Fourier Transforms

Aperture Radiation Beamwidth

$$
\begin{aligned}
& \bar{A}(\bar{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} a b\left[\frac{\sin (k a x / 2 r)}{k a x / 2 r} \frac{\sin (k a y / 2 r)}{k a y / 2 r}\right] \\
& \frac{\sin (k a x / 2 r)}{k a x / 2 r}=0 \\
& k a x / 2 r=\pi / 2 \\
& x / r=\lambda / 2 a
\end{aligned}
$$

- Look for first null
- Occurs when aperture is one wavelength wide and ful cycle integrates to zero
- $\mathrm{FWHM}=60$ degrees/size in wavelengths

Antenna Array Patterns

Composite

Array Factor

Element

- Composite Array id built from a element instantiated at array positions (convolution of element with space array factor)
- FT of convolution is product of FT's
- Composite pattern is the array pattern times element pattern.

