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EE243 Advanced Electromagnetic Theory

Lec # 22 Scattering and Diffraction

• Scattering From Small Objects
• Scattering by Small Dielectric and Metallic Spheres
• Collection of Scatters
• Spherical Wave Expansions

• Scalar
• Vector

Reading: Jackson Chapter 10.1, 10.3,
lite on both 10.2 and 10.4
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Overview
Scattering is similar to radiation but often requires 

simultaneously modeling the creation of 
polarization and currents from stimulation by an 
external source.

• Small scatterers are treated by dipole moments.
• Intermediate scatterers require expansion in many 

spherical harmonics.
• Large scatterers can be treated by approximation in 

various scalar and vectod diffraction integrals
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Scattering by Dipoles Induced in Small Scatterers

• Incident field is in direction n0 and has polarization e0
• They induce electric and magnetic dipole moments
• Scattered field is in direction n and has polarization e
• Note that for the far field there are two choices for each of e0

and e but one choice relative to the plane formed by n0 and n

n0

ne e0
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Scattering by Dipoles Induced in Small Scatterers

• Incident fields induce electric and magnetic dipole 
moments

• Far fields from are then found from these moments
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Differential Scattering Cross Section

• n is in observation direction with polarization e, while incident flux is in 
direction n0 with polarization e0. 

• Defined as the outgoing power radiated per unit solid angle divided by the 
incident power per unit area. It is related to the bistatic cross section.

• Then specialize to the case of the electric and magnetic dipole moments of 
small scatterers.

• Integrating over both polarizations and all angles gives the effective area of 
the scatterer
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Scattering from a Small Dielectric Sphere

• Dipole p is in the direction of the incident field and equal to the 
static polarization (same weight factor and proportional to volume).

• Radiation is proportional the observation polarization direction
dotted with the incident polarization. This gives cosθ in one angle 
and constant in φ.

• Strength is 6-th power of size (volume squared) and 4-th power 
relative to size in wavelengths. (This explains the creation of the 
blue sky success of horizontally polarized sun glasses).

• Strongest and equal in forward and backward directions.
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Scattering from a Small p.e.c. Sphere

p and m
• Both exist
• Are at right angles
• Interfere coherently 

– produce a + b cosθ type patterns
– low forward (1/3) and high backward (2x) scattering
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Collection of Scatterers

• Assume p and m corrected for being inside media
• Sum over all scatterers including relative phase measured 

with respect to incident direction n0 and scattered direction n
• F(q) is N (number of scatterers) in forward direction and 

drops quickly to zero except for crystal structures with Bragg 
effect.

• Can be used to measure range of intermolecular forces that 
produce density fluxuations (critical opalescence).
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Scalar Spherical Wave Representation

• Solution to scalar wave equation
• Spherical Harmonics Ylm(θ,φ)
• Radial variation depends only on index l

– Match boundary conditions on surface(s) at fixed r
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Scalar Spherical Wave Representation: Examples

• Scalar Green’s Function
• Plane wave in two forms
• Replace Numerical Grid outside object (Mei Method)
• Translation/rotation in coordinate systems 

– Addition Theorem for Spherical Harmonics
– Sphere-Sphere interactions
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Vector Spherical Wave Representation

• Operator L gives compact notation
• Expressed in terms of electric and magnetic multipoles
• Source and Boundary conditions on surface at fixed r

– Radial E and H component on a Sphere are adequate
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Vector Spherical Wave Representation: Example

• Total field sum of incident and scattered
• Expand scattered field 

– Outgoing waves (only) outside
– Both types but no incidint field inside
– Rotationally symmetric m = +1 and -1 (only)

• Boundary conditions
– Etan and Htan continuous on boundary of sphere

• Tractable for
– Conducting Sphere (Mie)
– Dielectric Sphere ?

• Useful for checking numerical simulators

Jackson 10.4


