### EE243 Advanced Electromagnetic Theory

#### Lec # 22 Scattering and Diffraction

- Scattering From Small Objects
- Scattering by Small Dielectric and Metallic Spheres
- Collection of Scatters
- Spherical Wave Expansions
  - Scalar
  - Vector

#### Reading: Jackson Chapter 10.1, 10.3, lite on both 10.2 and 10.4

#### Overview

Scattering is similar to radiation but often requires simultaneously modeling the creation of polarization and currents from stimulation by an external source.

- Small scatterers are treated by dipole moments.
- Intermediate scatterers require expansion in many spherical harmonics.
- Large scatterers can be treated by approximation in various scalar and vectod diffraction integrals

EE 210 Applied EM Fall 2006, Neureuther

#### Scattering by Dipoles Induced in Small Scatterers



- Incident field is in direction  $\mathbf{n}_0$  and has polarization  $\mathbf{e}_0$
- They induce electric and magnetic dipole moments
- Scattered field is in direction **n** and has polarization **e**
- Note that for the far field there are two choices for each of  $e_0$  and e but one choice relative to the plane formed by  $n_0$  and n

#### Scattering by Dipoles Induced in Small Scatterers

Jackson 10.1.A

$$\overline{E}_{inc} = e_0 E_0 e^{ik\hat{n}_0 \cdot \overline{x}}$$

$$\overline{H}_{inc} = \hat{n}_0 \times \frac{\overline{E}_{inc}}{Z_0}$$

$$\overline{p} = induced \_ electric \_ dipole$$

$$\overline{m} = induced \_ magnetic \_ dipole$$

$$\overline{E}_{sc} = \frac{1}{4\pi\varepsilon_0} k^2 \frac{e^{ikr}}{r} [(\hat{n} \times \overline{p}) \times n - n \times \overline{m} / c]$$

$$\overline{H}_{sc} = \hat{n} \times \frac{\overline{E}_{sc}}{Z_0}$$

 $ik\hat{n}$   $\overline{r}$ 

- Incident fields induce electric and magnetic dipole ulletmoments
- Far fields from are then found from these moments

#### **Differential Scattering Cross Section**

$$\frac{d\sigma}{d\Omega}(\hat{n},\hat{e};\hat{n}_{0},\hat{e}_{0}) = \frac{r^{2}\frac{1}{2Z_{0}}\left|\hat{e}^{*}\cdot\overline{E}_{sc}\right|^{2}}{\frac{1}{2Z_{0}}\left|\hat{e}_{0}^{*}\cdot\overline{E}_{inc}\right|^{2}}$$
$$\frac{d\sigma}{d\Omega}(\hat{n},\hat{e};\hat{n}_{0},\hat{e}_{0}) = \frac{k^{4}}{\left(4\pi\varepsilon_{0}E_{0}\right)^{2}}\left|\hat{e}^{*}\cdot\overline{p}+\left(\hat{n}\times\hat{e}^{*}\right)\cdot\overline{m}/c\right|^{2}$$

- **n** is in observation direction with polarization **e**, while incident flux is in direction  $\mathbf{n}_0$  with polarization  $\mathbf{e}_0$ .
- Defined as the outgoing power radiated per unit solid angle divided by the incident power per unit area. It is related to the bistatic cross section.
- Then specialize to the case of the electric and magnetic dipole moments of small scatterers.
- Integrating over both polarizations and all angles gives the effective area of the scatterer

# Scattering from a Small Dielectric Sphere $\overline{p} = 4\pi\varepsilon_0 \left(\frac{\varepsilon_r - 1}{\varepsilon_r + 2}\right) a^3 \overline{E}_{inc} \qquad \text{Jackson 10.1.B}$ $\underbrace{\frac{d\sigma}{d\Omega}(\hat{n}, \hat{e}; \hat{n}_0, \hat{e}_0) = k^4 a^6 \left|\frac{\varepsilon_r - 1}{\varepsilon_r + 2}\right|^2 \left|\hat{e}^* \cdot \hat{e}_0\right|^2}_{\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = \frac{8\pi}{3} k^4 a^6 \left|\frac{\varepsilon_r - 1}{\varepsilon_r + 2}\right|^2$

- Dipole **p** is in the direction of the incident field and equal to the static polarization (same weight factor and proportional to volume).
- Radiation is proportional the observation polarization direction dotted with the incident polarization. This gives  $\cos\theta$  in one angle and constant in  $\phi$ .
- Strength is 6-th power of size (volume squared) and 4-th power relative to size in wavelengths. (This explains the creation of the blue sky success of horizontally polarized sun glasses).
- Strongest and equal in forward and backward directions.

## Scattering from a Small p.e.c. Sphere $\overline{p} = 4\pi\varepsilon_0 a^3 \overline{E}_{inc} \qquad \text{Jackson 10.1.C}$ $\overline{m} = -2\pi a^3 \overline{H}_{inc}$ $\frac{d\sigma}{d\Omega} (\hat{n}, \hat{e}; \hat{n}_0, \hat{e}_0) = k^4 a^6 \left| \hat{e}^* \cdot \hat{e}_0 - \frac{1}{2} (\hat{n} \times \hat{e}^*) \cdot (\hat{n}_0 \times \hat{e}_0) \right|^2$

#### **p** and **m**

- Both exist
- Are at right angles
- Interfere coherently
  - produce  $a + b \cos\theta$  type patterns
  - low forward (1/3) and high backward (2x) scattering

Collection of Scatterers  

$$\frac{d\sigma}{d\Omega}(\hat{n},\hat{e};\hat{n}_{0},\hat{e}_{0}) = \frac{k^{4}}{(4\pi\varepsilon_{0}E_{0})^{2}} \left| \sum_{j} \left[ \hat{e}^{*} \cdot \overline{p}_{j} + (\hat{n} \times \hat{e}^{*}) \cdot \overline{m}_{j} / c \right] e^{i\overline{q} \cdot \overline{x}_{j}} \right|^{2}$$

$$\overline{q} = k\hat{n}_{0} - k\hat{n}$$

$$F(\overline{q}) = \left| \sum_{j} e^{i\overline{q} \cdot \overline{x}_{j}} \right|^{2}$$
Jackson 10.1.D
$$F(\overline{q}) = \sum_{j} \sum_{i} e^{i\overline{q} \cdot (\overline{x}_{j} - \overline{x}_{i})}$$

- Assume p and m corrected for being inside media
- Sum over all scatterers including relative phase measured with respect to incident direction  $\mathbf{n}_0$  and scattered direction  $\mathbf{n}$
- F(q) is N (number of scatterers) in forward direction and drops quickly to zero except for crystal structures with Bragg effect.
- Can be used to measure range of intermolecular forces that produce density fluxuations (critical opalescence).

#### Scalar Spherical Wave Representation

$$\Psi(\bar{x},\omega) = \sum_{l,m} f_{lm}(r) Y_{lm}(\theta,\phi) \qquad \text{Jackson 10.1.D}$$

$$\Psi(\bar{x},\omega) = \sum_{l,m} \left[ A_{lm}^{(1)} h_{l}^{(1)}(kr) + A_{lm}^{(2)} h_{l}^{(2)}(kr) \right] Y_{lm}(\theta,\phi)$$

$$h_{l}^{(1)}(kr) \rightarrow \left( -i^{l+1} \frac{e^{ikr}}{kr} \right)$$

$$h_{l}^{(2)}(kr) = \left[ h_{l}^{(2)}(kr) \right]^{*}$$

- Solution to scalar wave equation
- Spherical Harmonics  $Y_{lm}(\theta,\phi)$
- Radial variation depends only on index 1
  - Match boundary conditions on surface(s) at fixed r

#### Scalar Spherical Wave Representation: Examples Jackson 9.6, 10.3 $\frac{e^{ik|\bar{x}-\bar{x}'|}}{4\pi|\bar{x}-\bar{x}'|} = ik\sum_{l} J_{l}(kr_{<})h_{l}^{(1)}(kr_{>})\sum_{m=-l}^{l}Y_{lm}^{*}(\theta',\phi')Y_{lm}(\theta,\phi)$ $e^{i\overline{k}\cdot\overline{x}} = ik\sum_{l}i^{l}J_{l}(kr)\sum_{m=-l}^{l}Y_{lm}^{*}(\theta',\phi')Y_{lm}(\theta,\phi)$ $e^{i\overline{k}\cdot\overline{x}} = \sum_{l=0}^{\infty} i^{-l} \sqrt{4\pi(2l+1)} J_l(kr) Y_{l0}(\gamma)_{h_l^{(1)}(kr)}$ Numerical -Spherical Harmonic

- Scalar Green's Function
- Plane wave in two forms
- Replace Numerical Grid outside object (Mei Method)
- Translation/rotation in coordinate systems
  - Addition Theorem for Spherical Harmonics
  - Sphere-Sphere interactions

**Copyright 2006 Regents of University of California** 

**Expansion** Outside

Vector Spherical Wave Representation  

$$\overline{L} = \frac{1}{i} (\overline{r} \times \nabla) \qquad \text{Jackson 10.3}$$

$$\overline{X}_{lm}(\theta, \phi) = \frac{1}{\sqrt{l(l+1)}} \overline{L} Y_{lm}(\theta, \phi)$$

$$\overline{H} = \sum_{l,m} \left[ a_E(l,m) f_l(kr) \overline{X}_{lm} - \frac{i}{k} a_M(l,m) \nabla \times g_l(kr) \overline{X}_{lm} \right]$$

$$\overline{E} = Z_0 \sum_{l,m} \left[ \frac{1}{k} a_E(l,m) \nabla \times f_l(kr) \overline{X}_{lm} + a_M(l,m) g_l(kr) \overline{X}_{lm} \right]$$

$$g_l(kr) = A_l^{(1)} h_l^{(1)}(kr) + A_l^{(2)} h_l^{(2)}(kr)$$

$$f_l(kr) = B_l^{(1)} h_l^{(1)}(kr) + B_l^{(2)} h_l^{(2)}(kr)$$

- Operator L gives compact notation
- Expressed in terms of electric and magnetic multipoles
- Source and Boundary conditions on surface at fixed r
  - Radial E and H component on a Sphere are adequate 11 Copyright 2006 Regents of University of California 11



- Total field sum of incident and scattered
- Expand scattered field
  - Outgoing waves (only) outside
  - Both types but no incidint field inside
  - Rotationally symmetric m = +1 and -1 (only)
- Boundary conditions
  - $E_{tan}$  and  $H_{tan}$  continuous on boundary of sphere
- Tractable for
  - Conducting Sphere (Mie)
  - Dielectric Sphere ?
- Useful for checking numerical simulators