EE243 Advanced Electromagnetic Theory

Lec \# 25 Imaging as Diffraction (Cont.)

- Standing Waves in Films on Substrates
- Phasor Perturbational Images of Small Features
- Aberrations
- Interferometric Measurements
- Phase Contrast; Point Spread; Pattern-and-Probe

Reading: (This lecture is self contained and is based on excerpts from Born and Wolf Chapters 8 and 9 plus Chapter by Smith in Sheats and Smith)

Overview

Optical imaging also involves many other engineering aspects:

- Standing waves in films on substrates
- Pertubational methods for images of small features
- Aberrations and Strehl Ratio effects
- Phase interferometric measurement concepts
- Partial coherence of the illumination on a mask

Recording Media on a Substrate

Electric Field within Resist

> 5 waves match boundary conditions (or use signal flow analysis) use definition of τ_{D}

$$
E_{\text {RESIST }}(x, y, z)=E_{A I R_{-} I N C}(x, y) \frac{\tau_{12}\left(e^{-j k_{2} z}+\rho_{23} \frac{\downarrow}{\left.\tau_{D}^{2} e^{+j k_{2} z}\right)}\right.}{\substack{\text { Transmission in } \\
\text { Reflection at substrate }}} \begin{gathered}
\rho_{12} \rho_{23} \tau_{D}^{2} \\
\text { Round trip } \\
\text { loop gain }
\end{gathered}
$$

Copyright 2006 Regents of University of California

Waves in Recording Media

The wavelength in the media is shorter and waves are attenuated

$$
\begin{gathered}
n=n_{r}+j n_{i} \\
k_{m}=\left(n_{r}+j n_{i}\right) k_{\text {air }}=\left(n_{r}+j n_{i}\right) \frac{2 \pi}{\lambda_{\text {air }}} \\
n_{r} \Rightarrow \lambda_{m}=\frac{\lambda_{\text {air }}}{n_{r}} \quad n_{i} \leq 0 \rightarrow \text { attenuation }
\end{gathered}
$$

To match the lateral variation across the air resist interface

$$
\begin{array}{cr}
k_{m_{x}}=k_{a i r_{x}} & k_{m_{y}}=k_{a i r_{y}} \\
\text { Snell's Law } & \sin \theta_{m}=\frac{\sin \theta_{\text {air }}}{n_{r}}
\end{array}
$$

Copyright 2006 Regents of University of California

Reflection and Transmission

Reflection and transmission coefficients in going from media \mathbf{i} to media \mathbf{j}

$$
\rho_{i j}=\frac{n_{i}-n_{j}}{n_{i}+n_{j}} \quad \tau_{i j}=\frac{2 n_{i}}{n_{i}+n_{j}} \quad \text { Note: } 1+\rho=\tau
$$

Phase change and attenuation with distance z
Example: air to quartz ($\mathbf{n}_{\mathbf{q z}}=1.5$); $\rho=-0.2$ and $\tau=0.8$

$$
\tau(\mathrm{Z})=e^{-j\left(n_{r}+j n_{i}\right) \frac{2 \pi}{\lambda_{\text {air }}} z}
$$

Example: complex propagation
factor in going from $\mathrm{z}=0$ to $\mathrm{z}=\mathrm{D}$ is

$$
\tau_{D}=e^{-j\left(n_{r}+j n_{i}\right) \frac{2 \pi}{\lambda_{\text {air }}} D}
$$

The same net complex factor occurs for the upward wave in going from $\mathrm{z}=\mathrm{D}$ to $\mathrm{z}=0$.

Standing Wave Models (365 nm Example) Shipley 511A (neglecting n_{i})

$$
\begin{gathered}
n_{\text {RESIIT }}=1.7 \quad n_{\text {SUB }}=6.52-j 2.71 \\
\rho_{\text {RESIIT }}=\frac{n_{\text {RESIST }}-n_{\text {SUB }}}{n_{\text {RESIST }}+n_{\text {SUB }}}=0.64 \angle 179.5^{\circ} \\
E_{\text {MAX }}=1+|\rho|=1.64 \quad E_{\text {MIN }}=1-|\rho|=0.36 \\
I_{\text {MAX }}=(1+|\rho|)^{2}=2.87 \quad I_{\text {MIN }}=(1-|\rho|)^{2}=0.13 \\
C_{\text {VERTICAL }}=\frac{I_{M A X}-I_{\text {MIN }}}{I_{M A X}+I_{\text {MIN }}}=\frac{2.87-0.13}{2.87+0.13}=0.91
\end{gathered}
$$

Perturbation Model of Image Contributions

$$
(1+x)^{2}=1+2 x+x^{2} \quad(1+0.1)^{2}=1+0.2+0.01
$$

Consider a composite electric field made up of a large electric field and a small electric field that are time- harmonic, possibly out of phase and oriented in a co-linear direction.

$$
E_{C}=E_{L}+E_{S}=E_{L} e^{j \theta_{L}}+E_{S} e^{j \theta_{S}}
$$

The intensity is proportional to the electric field times its conjugate

Phasor Diagram in complex plane

$$
\begin{aligned}
& I=\bar{E}_{C} \cdot \bar{E}_{C}{ }^{*}=\left|E_{L}\right|^{2}+E_{L} E_{S} 2 \operatorname{Re}\left[e^{j\left(\theta_{S}-\theta_{L}\right)}\right]+\left|E_{S}\right|^{2} \\
& I=I_{L}+\sqrt{I_{L}} \sqrt{I_{S}} 2 \operatorname{Re}\left[e^{j\left(\theta_{S}-\theta_{L}\right)}\right]+I_{S} \\
& \text { Small }^{\text {Very Small }}
\end{aligned}
$$

Copyright 2006 Regents of University of California

Basic Types of Small Features

ARN
Copyright 2006 Regents of University of California

Intensity Models for Small Features

$$
\begin{gathered}
\mathrm{s}=\text { Square, } \mathrm{L}=\text { Line } \quad \mathrm{T}=\text { Transparent, } \quad \mathrm{o}=\text { Opaque } \\
\mathrm{I}_{\text {PEAK-TS }}=8.5[\mathrm{~d} /(\lambda / \mathrm{NA})]^{4} \\
\mathrm{I}_{\text {PEAK-TL }}=\operatorname{sqrt}\left(\mathrm{I}_{\text {PEAK-TS }}\right) \\
\mathrm{I}_{\text {DIP-OS }}=1-2 \operatorname{sqrt}\left(\mathrm{I}_{\text {PEAK-TS }}\right) \\
\mathrm{I}_{\text {DIP-OL }}=1-2 \operatorname{sqrt[sqrt(\mathrm {I}_{\text {PEAK-TS}})]}
\end{gathered}
$$

Small mask openings produce a point spread shaped distribution with an intensity proportional to the square of the area.

Peak and Minimum Intensity for Small Features

ARN SSLT 2000
Copyright 2006 Regents of University of California

Phase-Defects

Severity Factor for interaction is
[1-Mcos(ϕ)]

Worst case is a factor of 2 when $\phi=18 \mathbf{0}^{\circ}$

Copyright 2006 Regents of University of California

Phase Defects May Print Worse Out of Focus

> M = E field

Severity Factor [1-Mcos(ϕ)] becomes [2] when phase of defocus is included. transmission amplitude
Wantanabe, et al.

Optical Path Difference

The optical path difference (OPD) is the phase error over the pupil between rays for the actual lens and those for a perfect diffraction limited lens.

Born and Wolf
$7^{\text {th }}$ ed, Ch 9

The OPD is usually normalized to wavelengths.
The OPD contributes an additional phase factor of $\mathrm{e}^{\mathrm{j}(2 \pi / \lambda) \text { OPD }}$ in the integration of the rays in computing the electric field at the image.

For primary aberrations like tilt, defocus, spherical, coma, and astigmatism a power series is used

$$
\Phi=A_{n, m}^{\prime} \rho^{n} \cos ^{m} \theta
$$

Zernike introduced the so called "circle polynomials" that are orthonormal on the unit circle to describe aberrations.

$$
\Phi=A_{00}+\frac{1}{\sqrt{2}} \sum_{n=2}^{\infty} A_{n 0} R_{n}^{\infty}(\rho)+\sum_{n=1}^{\infty} \sum_{m=1}^{n} A_{n m} R_{n}^{m}(\rho) \cos m \theta \quad R_{n}^{ \pm m}(1)=1
$$

Primary Coma => orthogonal components => tilt + balanced ${ }_{1}$ coma

Expansion of Zernike

Table 2 Fringe Zernike Polynomial Coefficients and Corresponding Aberrations*

Term	Fringe Zernike Polvnomial	Aberration	
1	1	Piston	
2	$r \cos (\alpha)$	X Tilt	
3	$r \sin (\alpha)$	Y Tilt	The Zernike polynomials
4	$2 \mathrm{r}^{2}-1$	Defocus	
5	$\mathrm{r}^{2} \cos (20)$	3rd Order astigmatism	are individual functional
6	$5^{2} \sin (2 \alpha)$	3rd Order 45° astigmatism	variations in radius r and
7	$\left(3 r^{3}-2 \mathrm{r}\right) \cos (\alpha)$	3 rd Order X coma	variations in radius r and
8	$\left(3 r^{3}-2 r\right) \sin (\alpha)$	3 rd Order Y coma	angle α in an orthonormal
9	$\left(6 r^{4}-6 r^{2}\right)+1$	3 rd Order spherical	angl a in an orthonorma
10	$5^{3} \cos (3)$		expansion over the lens
11	$5^{2} \sin (3 \alpha)$		upil normalized to radius 1.
12	(4 $\left.\mathrm{r}^{4}-3 \mathrm{R}^{2}\right) \cos (2 \alpha)$	5th Order astigmatism	upil normalized to radius 1.
13	($4 \mathrm{R}^{2}-3 \mathrm{R}^{2}$) $\sin (2 \alpha)$	5th Order 45° astigmatism	
14	$\left(10 r^{3}-12 r^{3}+3 r\right) \cos (\alpha)$	5th Order X coma	72 Tilt in x is r $\cos (\alpha)$
15	$\left(10 r^{5}-12 r^{3}+3 \mathrm{r}\right) \sin (\alpha)$	Sith Order Y coma	22 1iltin x is i $\cos (\alpha)$
16	$20 r^{6}-30 r^{4}+12 r^{2}-1$	Sth Order spherical	
17	$\mathrm{r}^{+} \cos (4 \alpha)$		Z7 is Coma in x
18	$r^{1} \sin (40)$		Z7 is Comin in x
19	$\left(9 r^{5}-4 r^{3}\right) \cos (30)$		with Tilt removed
20	$\left(55^{4}-4 r^{3}\right) \sin (3 x)$		
21	$\left(15 \mathrm{r}^{4}-20 \mathrm{r}^{4}+6 \mathrm{r}^{2}\right) \cos (2 \mathrm{x})$	7th Order astigmatism	or so caled
22	$\left(15 r^{6}-20 r^{4}+6 r^{2}\right) \sin (2 \alpha)$	7 7h Order 45° astigmatism	balanced coma.
23	$\left(35 r^{7}-60 r^{5}+30 r^{3}-4 r^{2}\right) \cos (\alpha)$	7th Order X coma	Dalanced coma.
24	$\left(35 r^{7}-60 r^{5}+30 r^{3}-4 r^{2}\right) \sin (\alpha)$	7th Order Y coma	
25	$70 r^{8}-140 r^{6}+90 r^{4}-20 r^{2}+1$	7th Order spherical	
26	$5^{5} \cos (5 \alpha)$		Sheats and Smith, pp. 224
27	$\mathrm{r}^{5} \sin (50)$		15
28	$\left(6 r^{6}-5 r^{4}\right) \cos (4 \alpha)$ (6r $-5 r^{+}$) $\sin \left(4 r^{6}\right.$ opyright 2006 Reg	University of Californ	ia 15

Strehl Ratio

Figure 46 Strehl ratio for an aberrated point image.

The peak value of the point spread function decreases proportionally to the square of the RMS value of the aberrations present.

The Strehl Ratio is defined as the ratio of the peak value with aberrations to the peak value without aberrations.

> The Strehl Ratio is approximately $1-4 \pi^{2}(\text { RMS OPD })^{2}$

Sheats and Smith pp 255
Copyright 2006 Regents of University of California

Finding the Strehl Ratio

$$
E(\bar{x})=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} E(r, \alpha) e^{-j \bar{k} \cdot \bar{x}} e^{-j k O P D(r, \alpha)} r \delta r \delta \alpha
$$

To find the Strehl ratio (relative value the peak intensity in the presence of an aberration) we only need look at $x=0$ and assume that $E(r, a)$ is produced by a small pin hole and thus constant. This greatly simplifies the integral to

When the OPD is small

$$
E(0)=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} e^{-j k O P D(r, \alpha)} r \delta r \delta \alpha
$$

$$
E(0)=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1}\left[1-j k O P D(r, \alpha)-\frac{k^{2}}{2} O P D^{2}(r, \alpha)\right] r \delta r \delta \alpha=1-j k \bar{\Phi}-\frac{k^{2}}{2} \overline{\bar{\Phi}}
$$

Where $\overline{\bar{\Phi}}$ is the average of OPD 2 over the pupil
The intensity is given by $\quad 4 \pi^{2} \quad$ Orthogonal for Zernike's

$$
|E(0)|^{2}=\left|1-j k \bar{\Phi}-\frac{k^{2}}{2} \overline{\bar{\Phi}}\right|^{2}=\left|1-\frac{k^{2}}{2} \overline{\bar{\Phi}}-j k \bar{\Phi}\right|^{2} \approx 1-k^{2} \overline{\bar{\Phi}}+k^{2}(\bar{\Phi})^{2}=1-4 \pi^{2} \overline{\bar{\Phi}}=1-4 \pi^{2} \sum_{n, m}^{亠 \bar{\Phi}_{n, m}}=1-4 \pi^{2} \sum_{n, m} A_{n, m}^{2}
$$

Zero for Zernike’s

Zernike Phase Contrast Microscopy

1935 Nobel Prize 1953

- A phase object must be imaged in
$F(x)=e^{i \phi(x)} \approx 1+i \phi(x)$
$F(x)=\sum_{n} c_{m} e^{i \frac{2 \pi}{P} x}$
$c_{0}=1, c_{-m}=-c_{m}^{*}$
$G(x)= \pm i+i \phi(x)$
$I(x)=|G(x)|^{2}=1 \pm 2 \phi(x)$ many applications such as in Biology
- For a periodic phase object $\phi(\mathbf{x})$ with the Taylor series approximation the spectrum is $\mathbf{1}$ for the D.C. term and imaginary for the higher order terms.
- A phase plate is added to shift the
D.C. order by + or - 90 degrees
- A real (but fictitious) image proportional to the phase is produced.

Point Spread Interferometry

- A reference signal is introduced by using light from a pin hole or scatterer
- The signal under test then interacts with the reference signal spreading from the point
- Computer analysis of the resulting interference fringes on the screen allow the phase of the signal to be determined.

Mathematics of Aberrations and OPD

The electric field produce by the convergence of the cone of plane waves from the pupil at any point x on the wafer is given by integrating the waves over the pupil.

When OPD is small $\quad e^{j k O P D} \cong 1-j k O P D$

$$
E(\bar{x})=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} E(r, \alpha)[1-j k O P D(r, \alpha)] e^{-j \bar{k} \cdot \bar{x}} r \delta r \delta \alpha
$$

Defocus

Spherical

Coma

Garth Robins

Discovered through simulation Lead to a new theory Becoming a practical technology
Mask phases

- yellow $=0^{\circ}$
- green $=90^{\circ}$
- red $=180^{\circ}$

Defocus target Experiment on AIMS at low NA looks just like simulation!

HO Spherical

HO Coma

Illumination Controls Proximity Effects Two Pinholes in a mask

$$
I_{\text {TOTAL }}=E_{1}^{2}+2 E_{1} E_{2}+E_{2}^{2}
$$

$$
I_{\text {TOTAL }}=E_{1}^{2}-2 E_{1} E_{2}+E_{2}^{2}
$$

- Wafer
- Tails of electric field overlap (spillover)
- Relative phases depend on phase of illumination

Copyright 2006 Regents of University of California

Mutual Coherence of Illumination

$$
\begin{aligned}
& \mu_{21}=\mu\left(\bar{x}_{2}, \bar{x}_{1}\right)=\sum_{m} \sum_{n} \frac{E_{m}\left(\bar{x}_{1}\right) E_{n}\left(\bar{x}_{2}\right)^{*}}{\left|E_{m}\left(\bar{x}_{1}\right)\right| E_{n}\left(\bar{x}_{2}\right) \mid} \\
& m \neq n \Rightarrow 0 \\
& E_{n}\left(\bar{x}_{2}\right)=\mid E_{n}\left(\bar{x}_{1}\right) e^{-j \bar{k}_{n}\left(\bar{x}_{2}-\bar{x}_{1}\right)} \\
& \mu_{21}=\mu\left(\bar{x}_{2}-\bar{x}_{1}\right)=\sum_{n} e^{+j \bar{k}_{n}\left(\bar{x}_{2}-\bar{x}_{1}\right)} \\
& \left.\mu_{21}=\text { F.T.(Source_Shape }\right)\left.\right|_{\left(\bar{x}_{2}-\bar{x}_{1}\right)}
\end{aligned}
$$

- Defined as time-average normalized cross-product
- Assuming that illumination waves from different angles are incoherent the cross terms all drop out
- For a given source angle (k-vector) field at x_{2} found from field at x_{1}
- Sum for a uniform source is just the Fourier transform or the source shape

Mutual Coherence Function

$\left.I_{\text {TOTAL }}(x)=E_{1}^{2}(x)+2 \operatorname{Re} \mu\left(x_{2}-x_{1}\right) E_{1}(x) E_{2}(x)\right\}+E_{2}^{2}(x)$

- Measures the complex degree of coherence between any two points on the mask.
- Is a function only of the distance and angle between the two points and not their absolute positions.
- The value is given by the inverse Fourier transform of the wave angles and magnitudes that make up illumination. (The temporal phases are incoherent)
- For a disk of illumination of radius $\sigma \mathrm{NAk}_{0}$ it is the Airy function with argument $|\mathrm{x}| / \sigma$.
- Thus the signal is relatively coherent over most of a spot $1 / \sigma$ times the point spread function (i.e. (1.22/ σ) λ / NA).

Mutual Coherence Function: Top Hat

Figure 2.22: For any partial coherence factor, the degree of coherence $|\mu(\hat{r})|$ has the same shape except for a scaling of the x-axis by $(1 / \sigma)$.

Copyright 2006 Regents of University of California

Aerial Image Intensity for Knife Edge

